Problem 5

Undergraduate Problem Solving Contest
due Febuary, 2017

February 15, 2017

1 Matrix Polynomials

Let $\mathbb{Z}_{4}^{2 \times 2}$ represent the 2×2 matricies with entries in the integers modulo $4\left(\mathbb{Z}_{4}\right)$. A left matrix polynomial on $\mathbb{Z}_{4}^{2 \times 2}$ is a function from $\mathbb{Z}_{4}^{2 \times 2}$ to $\mathbb{Z}_{4}^{2 \times 2}$ of the form:

$$
f(X)=A_{d} X^{d}+A_{d-1} X^{d-1}+\cdots+A_{1} X+A_{0}
$$

Where A_{i} are in $\mathbb{Z}_{4}^{2 \times 2}$.
Q: Find 2 left matrix polynomials f, g such that:

1. For all $X \in \mathbb{Z}_{4}^{2 \times 2}, f(X)=g(X)=\left(\begin{array}{ll}0 & 0 \\ 0 & 0\end{array}\right)$.
2. f, g are relatively prime. Ie there is no left matrix polynomial $h(x)$ (with degree ≥ 1) such that $f(x)=h(x) \cdot q_{f}(x)$ and $g(x)=h(x) \cdot q_{g}(x)$ for any left matrix polynomials $q_{f}(x), q_{g}(x)$.
3. f, g have degree ≥ 1.

1.1 example

An example left matrix polynomial of degree 2 :

$$
\begin{aligned}
f(X) & =\left(\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right) X^{2}+\left(\begin{array}{ll}
0 & 3 \\
0 & 1
\end{array}\right) \\
f\left(\left(\begin{array}{ll}
0 & 2 \\
1 & 2
\end{array}\right)\right) & =\left(\begin{array}{ll}
2 & 0 \\
0 & 0
\end{array}\right)+\left(\begin{array}{ll}
0 & 3 \\
0 & 1
\end{array}\right)=\left(\begin{array}{ll}
2 & 3 \\
0 & 1
\end{array}\right)
\end{aligned}
$$

