Calculus III, Mathematics 2210-90

Examination 3, Nov 13, 15, 2003

You may use graphing calculators and a Table of Integrals. Each problem is worth 20 points. You MUST show your work. Just the correct answer is not sufficient for any points.

1. Find
\[\int \int_{R} (1 - x^2 - y^2) \, dx \, dy \]
where \(R \) is the region in the plane bounded by the curves \(y = 0 \), \(y = x^2 \), \(x = 1 \) .

2. Find the volume of the solid under the surface \(z = 9 - x^2 - y^2 \) and over the disk \(x^2 + y^2 \leq 9 \), and between the planes \(y = 0 \) and \(y = x \).

3. Find the area of the piece of the surface \(z = x^2 - y^2 \) lying over the disk \(x^2 + y^2 \leq 4 \).

4. Find the area of the parallelogram bounded by the lines
\[2x + y = 1, \quad 2x + y = 3, \quad y = x, \quad y = x + 4 \ . \]

5. The region in 3 dimensions bounded by the planes
\[x = 0, \quad y = 0, \quad z = 0, \quad x = 1, \quad y = 1, \quad z = x + y \]
is filled with an inhomogeneous mud whose density is \(\delta(x, y, z) = 2 - z \). Find the mass of mud in this region.