You may use graphing calculators and a Table of Integrals. Each problem is worth 20 points. You MUST show your work. Just the correct answer is not sufficient for any points.

1. \(\mathbf{V} = 3\mathbf{i} - \mathbf{j}, \mathbf{W} = 2\mathbf{i} + 5\mathbf{j} \) are two vectors in the plane.
 a) Find the angle between \(\mathbf{V} \) and \(\mathbf{W} \).
 b) Find the vector which is orthogonal to \(\mathbf{V} \) and counterclockwise from \(\mathbf{W} \).
 c) Find the area of the parallelogram spanned by \(\mathbf{V} \) and \(\mathbf{W} \).

2. A particle moves in the plane according to the equation
 \[\mathbf{X}(t) = \ln t \mathbf{i} + \frac{1}{t} \mathbf{j} \]

 Find the velocity, speed, acceleration, tangent and normal vectors, and normal acceleration of the particle at any time \(t \).

3. Find the equation of the plane through the point (0,-1,3) which is parallel to the vectors \(\mathbf{I} - 2\mathbf{J} + 2\mathbf{K} \) and \(3\mathbf{I} - 2\mathbf{J} + \mathbf{K} \).

4. Find the distance of the point \((2,0,1) \) from the line whose symmetric equations are
 \[\frac{x - 2}{3} = \frac{y + 1}{4} = \frac{z - 1}{-2} \]

5. A particle moves in space according to the formula \(\mathbf{X}(t) = e^t \mathbf{i} + e^{2t} \mathbf{j} - t\mathbf{K} \). Find the normal acceleration at the point \(t = 0 \).