In problems 1-4, find the limits.

1. \(\lim_{x \to 0} \frac{\cos x - 1}{x^2} \)
 \(\text{Answer.} \) \(= \lim_{x \to 0} \frac{-\sin x}{2x} = -\frac{1}{2} \)

2. \(\lim_{x \to \pi} \frac{(x - \pi)^3}{\sin x + x - \pi} \)
 \(\text{Answer.} \) \(= \lim_{x \to \pi} \frac{3(x - \pi)^2}{\cos x + 1} = \lim_{x \to \pi} \frac{6(x - \pi)}{-\sin x} = \lim_{x \to \pi} \frac{6}{-\cos x} = 6 \)

3. \(\lim_{x \to \infty} x^5 e^{-x} \)
 \(\text{Answer.} \) \(= \lim_{x \to \infty} \frac{x^5}{e^x} = 0, \)
 which converges to zero since the exponential grows faster than any polynomial.

4. \(\lim_{x \to \infty} \frac{\sqrt{1 + x^2} - x}{x} \)
 \(\text{Answer.} \) \(= \lim_{x \to \infty} \frac{1}{x^2} (1 + 1 - 1) = 0, \)
 since \(x^2 \to 0 \) as \(x \to \infty \). We arrived at the second formulation from the first by dividing both numerator and denominator by \(x \). Observe that, although l’Hôpital’s rule applies, it doesn’t get us anywhere.

In problems 5-7: Does the integral converge or diverge? If you can, find the value of the integral.

5. \(\int_0^\infty xe^{-x^2} \, dx = \frac{1}{2} \int_0^\infty e^{-u} \, du = \frac{1}{2}, \)
 using the substitution \(u = x^2, \) \(du = 2x \, dx \) and a known computation (see example 8.16).

6. \(\text{Answer.} \) \(\int_0^\infty \frac{x^2}{x^3 + 1} \, dx \) diverges, since
 \(\frac{x^2}{x^3 + 1} = \frac{1}{x + \frac{1}{x^2}} \geq \frac{1}{2x} \)
 for \(x \) sufficiently large, and our knowledge that \(\int_0^\infty dx/x \) diverges.
7. \[\int_0^1 \frac{dx}{x^{9/10}} \]

Answer. \(\lim_{a \to 0} \int_a^1 \frac{dx}{x^{9/10}} = \lim_{a \to 0} \left. 10x^{1/10} \right|_a^1 = 10 \)

8. Does the sequence converge or diverge?

a) \(a_n = \frac{n^2}{n!} \)

Answer. \(a_n = \frac{n^2}{n!} = \frac{n^2}{n(n-1)(n-2)!} = \left(\frac{1}{1-\frac{2}{n}} \right) \frac{1}{(n-2)!} \to 0 \)

since the first factor converges to 1, while the second converges to 0.

b) \(b_n = \frac{\sqrt{n^4}}{(n+1)^2} \)

Answer. \(b_n = \frac{\sqrt{n!}}{(n+1)^2} = \sqrt{\frac{n!}{(n+1)^2}} \to \infty \)

because the expression under the square root sign goes to infinity (which we can show by an argument similar to that in part a).

c) \(c_n = \frac{n^3 - 50n + 1}{n^4 + 123n^3 + 1} \)

Answer. \(c_n = \frac{n^3 - 50n + 1}{n^4 + 123n^3 + 1} = \frac{1 - \frac{50}{n^3} + \frac{1}{n^4}}{n(1 + \frac{123}{n} + \frac{1}{n^3})} \to 0 \)

since every factor converges to 1 except that \(n \to \infty \).

9. Does the series converge or diverge?

a) \(\sum_{n=1}^{\infty} \frac{n^2}{n!} \)

Answer. This converges by the ratio test: \(\frac{(n+1)^2}{(n+1)!} \cdot \frac{n!}{n^2} = \left(1 + \frac{1}{n} \right)^2 \cdot \frac{1}{n+1} \to 0 \)

which is less than 1.

b) \(\sum_{n=1}^{\infty} \frac{\sqrt{n^4}}{(n+1)^2} \)

Answer. This diverges by 9b: the general term does not go to 0.

c) \(\sum_{n=20}^{\infty} \frac{n^3 - 50n + 1}{n^4 + 123n^3 + 1} \)

Answer. This diverges because \(\frac{n^3 - 50n + 1}{n^4 + 123n^3 + 1} = \frac{1 - \frac{50}{n^3} + \frac{1}{n^4}}{n(1 + \frac{123}{n} + \frac{1}{n^3})} > \frac{1}{2n} \)

eventually. By comparison with \(\sum(1/n) \) the series diverges.
10. Does the series converge or diverge?

a) \(\sum_{n=1}^{\infty} \frac{3n+1}{n^{3/2}} \) converges
by comparison with the series \(\sum(1/n^{3/2}) \):
\[
\frac{3n+1}{n^{3/2}} = \frac{3 + \frac{1}{n}}{n^{3/2}} < \frac{4}{n^{3/2}}
\]

b) \(\sum_{n=1}^{\infty} \frac{3^n n!}{(n+1)!5^n + 1} \) converges
by comparison with the geometric series:
\[
\frac{3^n n!}{(n+1)!5^n + 1} = \frac{1}{n+1} \left(\frac{3^n}{5^n + (\frac{1}{n+1})} \right) \leq \left(\frac{3}{5} \right)^n
\]

c) \(\sum_{n=1}^{\infty} \frac{(2n)!(n+1)}{(2n+1)!} \) diverges
since the general term does not converge to 0:
\[
\frac{(2n)!(n+1)}{(2n+1)!} = \frac{n+1}{2n+1} \rightarrow \frac{1}{2}
\]

d) \(\sum_{n=1}^{\infty} \frac{1}{n^{1/2}(3n+1)} \) converges
by comparison with the series \(\sum(1/n^{3/2}) \):
\[
\frac{1}{n^{1/2}(3n+1)} < \frac{1}{3n^{3/2}}
\]

11. Find the radius of convergence of the series:

a) \(\sum_{n=3}^{\infty} n(n-1)(n-2)x^{n-3} \)
Answer. We observe that this is the thrice differentiated geometric series, so \(R = 1 \). However we can use the ratio test for the coefficients:
\[
\frac{(n+1)n(n-1)}{n(n-1)(n-2)} = \frac{n+1}{n-2} \rightarrow 1
\]

b) \(\sum_{n=0}^{\infty} (2^n + 1)x^n \)
Answer. Write down the ratio of successive coefficients and divide numerator and denominator by \(2^n \):
\[
\frac{2^{n+1} + 1}{2^n + 1} = \frac{2 + \frac{1}{2^n}}{1 + \frac{1}{2^n}} \rightarrow 2,
\]
so the radius of convergence is 1/2.

c) \(\sum_{n=1}^{\infty} \frac{3n^2 + 1}{n^4 + 1}(x + 1)^n \)
Answer. The coefficient looks like \(3/n \) and so the series converges if \(|x + 1| < 1 \), and diverges outside this interval. Thus \(R = 1 \).
12. Find the Maclaurin series for $(1 + x)^{-3}$.

Answer. Starting with the geometric series, substitute $-x$ for x:

$$(1 + x)^{-1} = \sum_{n=0}^{\infty} (-1)^n x^n$$

Now, differentiate twice:

$$-(1 + x)^{-2} = \sum_{n=1}^{\infty} (-1)^n n x^{n-1}$$

$$2(1 + x)^{-3} = \sum_{n=2}^{\infty} (-1)^n n(n-1) x^{n-2}$$

so

$$\frac{1}{(1 + x)^3} = \frac{1}{2} \sum_{n=0}^{\infty} (-1)^n (n + 2)(n + 1) x^n$$

13. Find the Maclaurin series for $\int_0^x \arctan t \, dt$.

Answer. We start by substituting $-x^2$ for x in the geometric series:

$$\frac{1}{1 + x^2} = \sum_{n=0}^{\infty} (-1)^n x^{2n}$$

Now integrate twice:

$$\arctan x = \sum_{n=0}^{\infty} (-1)^n \frac{x^{2n+1}}{2n+1},$$

$$\int_0^x \arctan t \, dt = \sum_{n=0}^{\infty} (-1)^n \frac{x^{2n+2}}{(2n+2)(2n+1)},$$

14. Find the Maclaurin series for $x \ln(x + 1)$.

Answer. Once again start with the geometric series, with $-x$ for x

$$(1 + x)^{-1} = \sum_{n=0}^{\infty} (-1)^n x^n.$$

Integrate and multiply by x:

$$\ln x x = x \sum_{n=0}^{\infty} (-1)^n \frac{x^{n+1}}{n+1} = \sum_{n=0}^{\infty} (-1)^n \frac{x^{n+2}}{n+1}.$$

15. Find the terms up to fourth order for the Maclaurin series for

$$\frac{e^x}{1 + x}$$

Answer. We write down the Maclaurin series for each of e^x, $1/(1 + x)$, explicitly, that is, term by term, up to the fourth order:

$$e^x = 1 + x + \frac{x^2}{2} + \frac{x^3}{6} + \frac{x^4}{24} + \cdots$$

$$\frac{1}{1 + x} = 1 - x + x^2 - x^3 + x^4 - \cdots$$
\[
\frac{1}{1-x} = 1 - x + x^2 - x^3 + x^4 + \cdots
\]

Now, we multiply these together as if they were polynomials, relegating all terms of order greater than 4 to the \(\cdots \):
\[
\frac{e^x}{1+x} = (1 + x + x^2 + \frac{x^3}{6} + \frac{x^4}{24} + \cdots)(1 - x + x^2 - x^3 + x^4 + \cdots)
\]
\[
= (1 - x + x^2 - x^3 + x^4) + (x - x^2 + x^3 - x^4) + (\frac{x^2}{2} - \frac{x^3}{2} + \frac{x^4}{2}) + (\frac{x^3}{6} - \frac{x^4}{6}) + \frac{x^4}{24} + \cdots
\]
where we have done the multiplication by successively multiplying the second series by the terms of the first. Now we collect terms;
\[
\frac{e^x}{1+x} = 1 + \frac{1}{2}x^2 - \frac{1}{3}x^3 + \frac{9}{24}x^4 + \cdots
\]
(Why have all the terms in the first two parentheses, except 1, cancelled?)