Calculus I
Practice Problems 3: Answers

1. A point moves around the unit circle so that the angle it makes with the x-axis at time \(t \) is \(\theta(t) = (t^2 + t)\pi \). Let \((x(t), y(t))\) be the cartesian coordinates of the point at time \(t \). What is \(dy/dt \) when \(t = 3 \)?

Answer. \(y(t) = \sin((t^2 + t)\pi) \), so
\[
\frac{dy}{dt} = \cos((t^2 + t)\pi)(2t + 1)\pi.
\]
Evaluating at \(t = 3 \):
\[
\frac{dy}{dt} = \cos(10\pi)(2(3) + 1) = (2(3) + 1)\pi = 7\pi.
\]

2. Find the derivative: \(f(x) = \sin x \cos x \)

Answer.
\[
f'(x) = \sin x(-\sin x) + \cos x\cos x = \cos^2 x - \sin^2 x.
\]

3. Find the derivative: \(g(x) = \frac{\sin x}{\cos x} \)

Answer. This is \(f(x) = \tan x \), so its derivative is \(f'(x) = \sec^2 x \). If you use the quotient rule, you get
\[
f'(x) = \frac{\cos x \cos x - \sin x(-\sin x)}{\cos^2 x} = \frac{1}{\cos^2 x}.
\]

4. Let \(f(x) = x \sin x \). Find the equation of the tangent line to the graph \(y = f(x) \) at the points \(x = (n + 1/2)\pi \) for any integer \(n \).

Answer. The easy answer is to draw the graph and observe that the tangent line is \(y = x \). See the graph. However, since the slope of the tangent line is given by the derivative, we calculate: \(f'(x) = x \cos x + \sin x \), and evaluate at \(x = (n + 1/2)\pi \), finding \(f'((n + 1/2)\pi) = 1 \). When \(x = (n + 1/2)\pi \), we calculate that \(y = (n + 1/2)\pi \) also, so the tangent line has the equation
\[
\frac{y - (n + 1/2)\pi}{x - (n + 1/2)\pi} = 1, \quad \text{or} \quad y = (-1)^n x.
\]
5. Consider the curves \(C_1 : y = \sin x \) and \(C_2 : y = \cos x \).

a) At which points \(x \) between \(-\pi/2\) and \(\pi/2\) do the curves have parallel tangent lines?

b) At which such points do they have perpendicular tangent lines?

Answer. At the point \(x \), the tangents to the curves \(C_1 \) and \(C_2 \) have slope \(\cos x, -\sin x \) respectively.

a) These lines are parallel if \(\cos x = -\sin x \), or \(\tan x = -1 \), which has the solution \(x = -\pi/4 \).

b) These lines are perpendicular if \(\cos x (-\sin x) = -1 \), or \(\sin x \cos x = 1 \). But then

\[
\sin(2x) = 2\sin x \cos x = 2
\]

which has no solution: the curves never perpendicular tangent lines. Here are the graphs of the given curves.
6. Differentiate: \(f(x) = \frac{1 + \tan x}{1 - \tan x} \)

Answer. Use the addition formula for the tangent: \(f(x) = \tan(x + \pi/4) \). Then differentiate: \(f'(x) = \sec^2(x + \pi/4) \). If you used the quotient rule, you probably ended up with

\[
f'(x) = \frac{2\sec^2 x}{(1 - \tan x)^2},
\]

which is also the correct answer.

7. Let \(y = x + 25x^{-1} \). Find an approximate value of \(y \) when \(x = 3.2 \).

Answer. If we start at \(x = 3 \), we find \(y = 3 + 25/3 = 11.33 \). Take the increment \(dx = 0.2 \), and now take differentials. Take the increment \(dx = 0.2 \) and now take differentials:

\[
dy = dx - 25x^{-2} dx.
\]

Substituting the values determined above: \(dy = .2 - (25/9)(.2) = -.36 \), so the approximate value of \(y \) is 11.33.36 = 10.98. Note that at \(x = 5 \) we have \(dy = 0 \), so this technique will not work to approximate values of \(y \) for \(x \) near 5.

8. Find an approximate value of \(\tan(0.26\pi) \).

Answer. Here we want to start at \(x = \pi/4, y = 1 \) and \(dx = .01\pi \). We have \(dy = \sec^2 x dx \), so at \(x = \pi/4 \), \(dy = (\sqrt{2})^2(.01) = .02 \). Thus the approximation to \(y \) is 1+.02=1.02.

9. Find the equation of the tangent line to \(y = x^2(x^3 - 1) \) at \((2,28) \).

Answer. Taking differentials,

\[
dy = 2x(x^3 - 1)dx + x^2(3x^2 dx).
\]

Since this gives the linear approximation to the graph, we get the equation of the tangent line by substituting \(x = 2, dx = x = 2, dy = y = 28 \):

\[
y = 28 = (4)(7)(x - 2) + 4(12)(x - 2)
\]

which simplifies to \(y = 76x - 124 \).

10. Find the equation of the tangent line to the curve \(y = x \cos x \) at \((\pi/4, \pi \sqrt{2}/8) \).

Answer. The equation of differentials is \(dy = -x \sin x dx + \cos x dx \). Substituting \(x = \pi/4, dx = x - \pi/4 \), \(dy = y - \pi \sqrt{2}/8 \):

\[
y - \frac{\pi \sqrt{2}}{8} = \frac{\pi \sqrt{2}}{4} \left(x - \frac{\pi}{4}\right) + \frac{\sqrt{2}}{2} \left(x - \frac{\pi}{4}\right)
\]

which simplifies to

\[
y = \frac{\sqrt{2}}{2} \left(1 - \frac{\pi}{4}\right) x + \frac{\pi^2 \sqrt{2}}{32}
\]