1. In the arrow-shaped polygon [see figure], the angles at vertices A, C, D, E and F are right angles, $BC = FG = 5$, $CD = FE = 20$, $DE = 10$, and $AB = AG$. The area of the polygon is closest to
(A) 288 (B) 291 (C) 294
(D) 297 (E) 300

2. The integers 1, 2, 3, 4 are arranged in a 2×2 matrix $\begin{bmatrix} a & b \\ c & d \end{bmatrix}$. The probability that the determinant, $ad - bc$, is even is
(a) $\frac{1}{3}$ (b) $\frac{2}{5}$ (c) $\frac{1}{2}$ (d) $\frac{2}{3}$ (e) $\frac{4}{5}$

3. Each day Walter gets $3 for doing his chores or $5 for doing them exceptionally well. After 10 days of doing his chores daily, Walter has received a total of $36. On how many days did Walter do them exceptionally well?
(A) 3 (B) 4 (C) 5 (D) 6 (E) 7

4. What is the sum of the digits of the decimal form of the product $2^{1999} \cdot 5^{2001}$?
(A) 2 (B) 4 (C) 5 (D) 7 (E) 10
5. The ratio of the radii of two concentric circles is 1:3. If \overline{AC} is a
diameter of the larger circle, \overline{BC} is a chord of the
larger circle that is tangent to the smaller circle, and
$AB = 12$, then the radius of the larger circle is
(A) 13 (B) 18 (C) 21 (D) 24 (E) 26

6. In how many ways can 5 dollars be paid in dimes and quarters?
 (a) 25 (b) 24 (c) 10 (d) 11 (e) None of these

7. Renzo rolls a fair regular octahedral die marked with the numbers 1 through 8. Then
Nick rolls a fair six-sided die. What is the probability that the product of the two rolls is a
multiple of 3?
 (a) $\frac{1}{12}$ (b) $\frac{1}{3}$ (c) $\frac{1}{2}$ (d) $\frac{7}{12}$ (e) $\frac{2}{3}$

8. Let f be a linear function with the properties that $f(1) \leq f(2)$, $f(3) \geq f(4)$,
 and $f(5) = 5$. Which of the following statements is true?
 (A) $f(0) < 0$ (B) $f(0) = 0$ (C) $f(1) < f(0) < f(-1)$
 (D) $f(0) = 5$ (E) $f(0) > 5$

9. For how many values of k is 12^{12} the least common multiple of the positive integers
 6^k, 8^k, and k?
10. Find all positive integers x and y such that $x^2 = y^2 + 77$.

11. In how many ways can 7 people be divided into two teams, with each team having at least one member?
 (a) 72 (b) 32 (c) 144 (d) 48 (e) 63

12. Point P is 9 units from the center of a circle of radius 15. How many different chords of the circle contain P and have integer lengths?
 (A) 11 (B) 12 (C) 13 (D) 14 (E) 29

13. Part of an “n-pointed regular star” is shown. It is a simple closed polygon in which all $2n$ edges are congruent, angles A_1, A_2, \ldots, A_n are congruent and angles B_1, B_2, \ldots, B_n are congruent. If the acute angle at A_1 is 10° less than the acute angle at B_1, then $n =
 (A) 12 (B) 18 (C) 24 (D) 36 (E) 60