$$
\begin{aligned}
& \int_{0}^{1} \int_{0}^{12} x y d x d y=\int_{0}^{1}\left[\frac{x^{2}}{2} y\right]_{x=0}^{x=2 y} d y \\
& =\int_{0}^{1} \frac{(2 y)^{2}}{2} y d y=\int_{0}^{1} 2 y^{3} d y \\
& =\left[\frac{y^{4}}{2}\right]_{y=0}^{y=1}=\frac{1}{2}
\end{aligned}
$$

Cylindrical and Spherical Coordinates

We can describe a point, P, in three different ways.
Cartesian
Cylindrical
Spherical

Cylindrical Coordinates

$x=r \cos \theta$
$r=\sqrt{x^{2}+y^{2}}$
$y=r \sin \theta$
$\tan \theta=y / x$
$z=z$
$z=z$

Spherical Coordinates

$$
\begin{array}{ll}
x=\rho \sin \varphi \cos \theta & \rho=\sqrt{x^{2}+y^{2}+z^{2}} \\
y=\rho \sin \varphi \sin \theta & \tan \theta=y / x \\
z=\rho \cos \varphi & \cos \varphi=\frac{z}{\sqrt{x^{2}+y^{2}+z^{2}}}
\end{array}
$$

Easy Surfaces in Cylindrical Coordinates

a) $r=1$
b) $\theta=\pi / 3$
c) $z=4$

Easy Surfaces in Spherical Coordinates

a) $\rho=1$
b) $\theta=\pi / 3$
C) $\varphi=\pi / 4$

EX 1 Convert the coordinates as indicated
a) $(3, \pi / 3,-4)$ from cylindrical to Cartesian.
b) $(-2,2,3)$ from Cartesian to cylindrical.

EX 2 Convert the coordinates as indicated
a) $(8, \pi / 4, \pi / 6)$ from spherical to Cartesian.
b) $(2 \sqrt{3}, 6,-4)$ from Cartesian to spherical.

EX 3 Convert from cylindrical to spherical coordinates.
($1, \pi / 2,1$)

EX 4 Make the required change in the given equation.

a) $x^{2}-y^{2}=25$ to cylindrical coordinates.
b) $x^{2}+y^{2}-z^{2}=1$ to spherical coordinates.
c) $\rho=2 \cos \varphi$ to cylindrical coordinates.

EX 4 Make the required change in the given equation (continued)

d) $x+y+z=1$ to spherical coordinates.
e) $r=2 \sin \theta$ to Cartesian coordinates.
f) $\rho \sin \theta=1$ to Cartesian coordiantes

