

Quick Review of the Conic Sections

Surfaces in Three-Space

The graph of a 3-variable equation which can be written in the form F(x,y,z) = 0 or sometimes z = f(x,y) (if you can solve for *z*) is a surface in 3D. One technique for graphing them is to graph <u>cross-sections</u> (intersections of the surface with well-chosen planes) and/or <u>traces</u> (intersections of the surface with the coordinate planes).

We already know of two surfaces:

a) plane
$$Ax + By + Cz = D$$

b) sphere $(x-h)^2 + (y-k)^2 + (z-l)^2 = r^2$

EX 1 Sketch a graph of
$$z = x^2 + y^2$$
 and $x = y^2 + z^2$.

A <u>cylinder</u> is the set of all points on lines parallel to ℓ that intersect C where C is a plane curve and ℓ is a line intersecting C, but not in the plane of C. \uparrow

A <u>Quadric Surface</u> is a 3D surface whose equation is of the second degree.

The general equation is

 $Ax^{2}+By^{2}+Cz^{2}+Dxy+Exz+Fyz+Gx+Hy+Iz+J=0$,

given that $A^2 + B^2 + C^2 \neq 0$.

With rotation and translation, these possibilities can be reduced to two distinct types.

1)
$$Ax^2 + By^2 + Cz^2 + J = 0$$

2) $Ax^2 + By^2 + Iz = 0$

Basic Quadric Surfaces

ELLIPTIC CONE

 $\frac{x^2}{a^2} + \frac{y^2}{b^2} - \frac{z^2}{c^2} = 0$

ELLIPTIC PARABOLOID

