

Surfaces in Three-Space

Quick Review of the Conic Sections

a) Parabola $y=x^{2} \quad x=y^{2}$

b) Ellipse $\quad \frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$

c) Hyperbola $\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=1 \quad \frac{y^{2}}{b^{2}}-\frac{x^{2}}{a^{2}}=1$

Surfaces in Three-Space

The graph of a 3 -variable equation which can be written in the form $F(x, y, z)=0$ or sometimes $z=f(x, y)$ (if you can solve for z) is a surface in 3D. One technique for graphing them is to graph cross-sections (intersections of the surface with well-chosen planes) and/or traces (intersections of the surface with the coordinate planes).

We already know of two surfaces:
a) plane $A x+B y+C z=D$
b) sphere $(x-h)^{2}+(y-k)^{2}+(z-l)^{2}=r^{2}$

EX 1 Sketch a graph of $z=x^{2}+y^{2} \quad$ and $x=y^{2}+z^{2}$.

A cylinder is the set of all points on lines parallel to ℓ that intersect C where C is a plane curve and ℓ is a line intersecting C , but not in the plane of C .

A Quadric Surface is a 3D surface whose equation is of the second degree. The general equation is
$A x^{2}+B y^{2}+C z^{2}+D x y+E x z+F y z+G x+H y+I z+J=0$,
given that $A^{2}+B^{2}+C^{2} \neq 0$.
With rotation and translation, these possibilities can be reduced to two distinct types.

1) $A x^{2}+B y^{2}+C z^{2}+J=0$
2) $A x^{2}+B y^{2}+I z=0$

ELLIPSOID

$$
\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}+\frac{z^{2}}{c^{2}}=1
$$

HYPERBOLOID OF ONE SHEET

$$
\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}-\frac{z^{2}}{c^{2}}=1
$$

HYPERBOLOID OF TWO SHEETS

$$
\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}-\frac{z^{2}}{c^{2}}=1
$$

ELLIPTIC PARABOLOID

$$
z=\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}
$$

HYPERBOLIC PARABOLOID

$$
z=\frac{y^{2}}{b^{2}}-\frac{x^{2}}{a^{2}}
$$

ELLIPTIC CONE

$$
\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}-\frac{z^{2}}{c^{2}}=0
$$

EX 2 Name and sketch these graphs
a) $9 x^{2}+y^{2}-z^{2}=-4$

b) $9 x^{2}+y^{2}-z^{2}=4$

C) $x^{2}+4 y^{2}-z=0$

d) $x^{2}+y^{2}=1$

e) $x^{2}-y^{2}=25$

$$
\text { f) } z=y^{2}
$$

