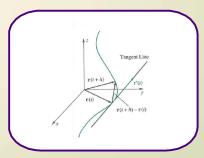


$$\begin{split} & \int\limits_{0}^{1} \int\limits_{0}^{2y} xy dx dy = \int\limits_{0}^{1} \left[\frac{x^2}{2} y \right]_{x=0}^{x=2y} dy \\ & = \int\limits_{0}^{1} \frac{(2y)^2}{2} y dy = \int\limits_{0}^{1} 2y^3 dy \\ & = \left[\frac{y^4}{2} \right]_{y=0}^{y=1} = \frac{1}{2} \end{split}$$

Lines and Tangent Lines in 3-Space



A 3-D curve can be given parametrically by x = f(t), y = g(t) and z = h(t) where t is on some interval I and f, g, and h are all continuous on I. We could specify the curve by the position vector $\vec{r}(t) = f(t)\hat{i} + g(t)\hat{j} + h(t)\hat{k}$.

Given a point P_{θ_i} determined by the vector, \vec{r}_{θ} and a vector $\vec{v} = a\hat{i} + b\hat{j} + c\hat{k}$, the equation $\vec{r} = \vec{r}_0 + \vec{v}t$ determines a line passing through P_{θ} at $t = \theta$ and heading in the direction determined by \vec{v} .

(Å special case is when you are given two points on the line, P_0 and P_I , in which case $\vec{v} = \overline{P_0 P_I}$.)

$$\vec{r} = \langle x, y, z \rangle, \quad \vec{r}_0 = \langle x_0, y_0, z_0 \rangle \Rightarrow \langle x, y, z \rangle = \langle x_0, y_0, z_0 \rangle + \langle a, b, c \rangle t$$

$$x = x_0 + at$$
, $y = y_0 + bt$, $z = z_0 + ct$

These become the <u>parametric equations</u> of a line in 3D where a,b,c are called <u>direction numbers</u> for the line (as are any multiples of a,b,c).

EX 1 Find parametric equations of a line through

$$(2,-1,-5)$$
 and $(7,-2,3)$.

Symmetric Equations for a line

$$x = x_0 + at, y = y_0 + bt, z = z_0 + ct$$

$$a \neq 0$$

$$b \neq 0$$

$$c \neq 0$$

$$\Rightarrow t = \frac{x - x_0}{a} \qquad t = \frac{y - y_0}{b} \qquad t = \frac{z - z_0}{c}$$

This is the line of intersection between the two planes given by

$$\frac{x-x_0}{a} = \frac{y-y_0}{b} \quad \text{and} \quad \frac{y-y_0}{b} = \frac{z-z_0}{c} \quad .$$

EX 2 Write the symmetric equations for the line through (-2,2,-2) and parallel to $\langle 7,-6,3 \rangle$.

EX 3 Find the symmetric equations of the line through (-5,7,-2) and perpendicular to both $\langle 3,1,-3 \rangle$ and $\langle 5,4,-1 \rangle$.

EX 4 Find the symmetric equations of the line of intersection between the planes x + y - z = 2 and 3x - 2y + z = 3.

Tangent Line to a Curve

If $\vec{r} = \vec{r}(t) = f(t)\hat{i} + g(t)\hat{j} + h(t)\hat{k}$ is a position vector along a curve in 3D,

then
$$\vec{r}'(t) = \lim_{h \to 0} \frac{\vec{r}(t+h) - \vec{r}(t)}{h} \Rightarrow \vec{r}'(t) = f'(t)\hat{i} + g'(t)\hat{j} + h'(t)\hat{k}$$

is a vector in the direction of the tangent line to the 3D curve. (This holds in 2D as well.)

EX 5 Find the parametric equations of the tangent line to the curve

$$x = 2t^2$$
, $y = 4t$, $z = t^3$ at $t = 1$.