

Vector-Valued Functions and Curvilinear Motion

A vector-valued function associates a vector output, $\vec{F}(t)$, to a scalar input.
i.e $\quad \vec{F}(t)=f(t) \hat{i}+g(t) \hat{j}=\langle f(t), g(t)\rangle \quad$ (in 2D)
where f and g are real-valued functions of t
or
(in 3D).

Definition $\lim _{t \rightarrow c} \vec{F}(t)=\vec{L}$ means that for every $\varepsilon>0$ there is a corresponding $\delta>0$ such that $\|\vec{F}(t)-\vec{L}\|<\varepsilon$, provided $0<|t-c|<\delta \quad$, i.e.

$$
0<|t-c|<\delta \Rightarrow\|\vec{F}(t)-\vec{L}\|<\varepsilon
$$

Theorem A Let $\vec{F}(t)=f(t) \hat{i}+g(t) \hat{j}$. Then \vec{F} has a limit at c iff f and g have limits at c and

$$
\lim _{t \rightarrow c} \vec{F}(t)=\left[\lim _{t \rightarrow c} f(t)\right] \hat{i}+\left[\lim _{t \rightarrow c} g(t)\right] \hat{j}
$$

Continuity $\Rightarrow \vec{F}(t)$ is continuous at $t=c$ if $\lim _{t \rightarrow c} \vec{F}(t)=\vec{F}(c)$.
Derivative $\Rightarrow \vec{F}^{\prime}(t)=\lim _{h \rightarrow 0} \frac{\vec{F}(t+h)-\vec{F}(t)}{h}$

Differentiation Formulas
$\vec{F}(t) \& \vec{G}(t)$ are differentiable

$$
c \in \mathfrak{R}
$$

1) $D_{t}[\vec{F}(t)+\vec{G}(t)]=\vec{F}^{\prime}(t)+\vec{G}^{\prime}(t)$
2) $D_{t}[c \vec{F}(t)]=c \vec{F}^{\prime}(t)$
3) $D_{t}[h(t) \cdot \vec{F}(t)]=h(t) \cdot \vec{F}^{\prime}(t)+h^{\prime}(t) \cdot \vec{F}(t)$
4) $D_{t}[\vec{F}(t) \cdot \vec{G}(t)]=\vec{F}(t) \cdot \vec{G}^{\prime}(t)+\vec{F}^{\prime}(t) \cdot \vec{G}(t)$
5) $D_{t}[\vec{F}(h(t))]=\vec{F}^{\prime}(h(t)) \cdot h^{\prime}(t)$

Integration Formula

$$
\int \vec{F}(t) d t=\left[\int f(t) d t\right] \hat{i}+\left[\int g(t) d t\right] \hat{j}
$$

Ex 1 Find $\lim _{t \rightarrow \infty}\left[\frac{t \sin t}{t^{2}} \hat{i}-\frac{7 t^{3}}{t^{3}-3 t} \hat{j}\right]$

EX 2 Find $\vec{F}^{\prime}(x)$ and $\vec{F}^{\prime \prime}(x)$ for $\vec{F}(x)=\left(e^{x}+e^{-x^{2}}\right) \hat{i}+\cos (2 x) \hat{j}$

EX $3 \vec{f}(y)=\left(\tan ^{2} y\right) \hat{i}+\sin ^{2}\left(\tan ^{2} y\right) \hat{j}+3 y \hat{k}$
Find $\bar{f}^{\prime}(y)$.
$\vec{r}(t)$ is position vector at any time t along a curve given by

$$
x=x(t) \text { and } y=y(t) .
$$

$$
\vec{r}(t)=x(t) \hat{i}+y(t) \hat{j}
$$

$$
\vec{v}(t)=\vec{r}^{\prime}(t)=x^{\prime}(t) \hat{i}+y^{\prime}(t) \hat{j}
$$

$$
\vec{a}(t)=\vec{v}^{\prime}(t)=\vec{r}^{\prime \prime}(t)=x^{\prime \prime}(t) \hat{i}+y^{\prime \prime}(t) \hat{j}
$$

EX 4 Given $\vec{r}(t)=(4 \sin t) \hat{i}+(8 \cos t) \hat{j}$,
a) Find $\vec{v}(t)$ and $\vec{a}(t)$.
b) Find the speed when $t=\pi / 4$.

c) Sketch a portion of the graph of $\vec{r}(t)$ containing the position P of the particle at $t=\pi / 4$. Draw \vec{v} and \vec{a} at P as well.

EX 5 Suppose that an object moves around a circle with center at (0,0) and radius r at a constant angular speed of ω radians $/ \mathrm{sec}$.

If its initial position is $(0, r)$, find its acceleration.

