

The Cross Product

The Cross Product

$$
\begin{aligned}
\vec{u} \times \vec{v} & =\left\langle u_{2} v_{3}-u_{3} v_{2}, u_{3} v_{1}-u_{1} v_{3}, u_{1} v_{2}-u_{2} v_{1}\right\rangle \\
\text { where } \vec{u} & =\left\langle u_{1}, u_{2}, u_{3}\right\rangle \text { and } \vec{v}=\left\langle v_{1}, v_{2}, v_{3}\right\rangle .
\end{aligned}
$$

$$
\begin{aligned}
& \text { EX } 1 \text { If } \vec{a}=\langle 3,3,1\rangle \text { and } \vec{b}=\langle-2,-1,0\rangle \text { and } \vec{c}=\langle-2,-3,-1\rangle, \\
& \text { find } \vec{a} \times(\vec{b} \times \vec{c}) \text {. }
\end{aligned}
$$

Theorem A

Let \vec{u} and \vec{v} be 3-D vectors and θ is the angle between them.
Then

1) $\vec{u} \cdot(\vec{u} \times \vec{v})=0=\vec{v} \cdot(\vec{u} \times \vec{v})$
2) \vec{u}, \vec{v} and $\vec{u} \times \vec{v}$ form a right-handed triple.
3) $\|\vec{u} \times \vec{v}\|=\|\vec{u}\|\|\vec{v}\| \sin \theta$

Theorem B

Two 3-D vectors, \vec{u} and \vec{v} are parallel iff $\vec{u} \times \vec{v}=0$.

EX 2 Find the plane through these points.
$P_{1}(-1,3,0), P_{2}(5,1,2)$ and $P_{3}(4,-3,-1)$

EX 3 Find the area of a parallelogram with vectors \vec{a} and \vec{b} as adjacent sides.

EX 4 Find the volume of a parallelogram prism(box) determined by the sides \vec{a}, \vec{b} and \vec{c}.

Theorem C Properties of Cross Product

\vec{u}, \vec{v} and \vec{w} are 3-D vectors and $k \in \mathfrak{R}:$

1) $\vec{u} \times \vec{v}=-\vec{v} \times \vec{u}$
2) $u \times(v+w)=(\vec{u} \times \vec{v})+(\vec{u} \times \vec{w})$
3) $k(\vec{u} \times \vec{v})=(k \vec{u}) \times \vec{v}=\vec{u} \times(k \vec{v})$
4) $\vec{u} \times \overrightarrow{0}=\overrightarrow{0} \times \vec{u}=\overrightarrow{0}$ and $\vec{u} \times \vec{u}=\overrightarrow{0}$
5) $(\vec{u} \times \vec{v}) \cdot \vec{w}=\vec{u} \cdot(\vec{v} \times \vec{w})$
6) $\vec{u} \times(\stackrel{\rightharpoonup}{v} \times \stackrel{\rightharpoonup}{w})=(\stackrel{\rightharpoonup}{u} \cdot \stackrel{\rightharpoonup}{w}) \stackrel{\rightharpoonup}{v}-(\vec{u} \cdot \stackrel{\rightharpoonup}{v}) \stackrel{\rightharpoonup}{w}$

$$
\hat{i} \times \hat{j}=\hat{k} \quad \hat{j} \times \hat{k}=\hat{i} \quad \hat{k} \times \hat{i}=\hat{j}
$$

EX 5 State whether each of the following expressions make sense or not. If it makes sense, tell if the result is a scalar or a vector.
a) $\vec{u} \cdot(\stackrel{\rightharpoonup}{v} \times \vec{w})$
b) $\vec{u}+(\vec{v} \times \vec{w})$
c) $(\vec{a} \cdot \vec{b}) \times \vec{c}$
d) $(\vec{a} \times \vec{b}+k)$
e) $(\vec{a}+\vec{b}) \times(\vec{c}+\vec{d})$
f) $(\vec{a} \cdot \vec{b}+\vec{k})$

EX 6 Find the equation of a plane through $(5,-1,2)$ that is perpendicular to the line of intersection of the planes $4 x-3 y+2 z=1$ and $2 x-y+z=11$.

