

A Geometric and Algebraic Approach to

VECTORS (Geometric Approach)

Scalar

Vector

Magnitude

Direction
$\vec{u}=\vec{v} \quad$ if they have the same magnitude and direction.
zero vector $\Rightarrow \overrightarrow{0}$ and $\overrightarrow{0}+\vec{u}=\vec{u}+\overrightarrow{0}=\vec{u}$
$-\vec{u} \Rightarrow$
scalar multiple of $\vec{u} \Rightarrow c \vec{u}$, where c is a real number,
means we have a vector in the direction of \bar{u} but scaled
in length.

Adding vectors $\Rightarrow \quad \vec{u}+\vec{v}$

EX 1

Express \mathbf{w} in terms of \mathbf{u} and \mathbf{v}.

EX 2
Draw where $\mathbf{w}=\mathbf{v}_{\mathbf{1}}+\mathbf{v}_{\mathbf{2}}+\mathbf{v}_{\mathbf{3}}$

Mark pushes on a post in the direction $S 30^{\circ} \mathrm{E}$ with a force
of 60 lbs . Dan pushes on the same post in the direction $\mathrm{S} 60^{\circ} \mathrm{W}$ with a force of 80 lbs . What are the magnitude and direction of the resulting force?

EX 4
A ship is sailing due south at 20 mph . A man walks west across the deck at 3 mph . What are the magnitude and direction of his velocity relative to the surface of the water?

Vectors (Algebraic Approach)

If we place our vector on a Cartesian Coordinate system
with its tail at the origin, then its head will end at some point $\left(u_{1}, u_{2}, u_{3}\right)$. We say that $\mathbf{u}=\left\langle u_{1}, u_{2}, u_{3}\right\rangle$
u_{1}, u_{2} and u_{3} are called components of \boldsymbol{u}.
$\mathbf{u}=\mathbf{v}$ iff $u_{1}=v_{l}, u_{2}=v_{2}$, and $u_{3}=v_{3}$
$\mathbf{u}+\mathbf{v}=\left\langle u_{1}, u_{2}, u_{3}\right\rangle+\left\langle v_{1}, v_{2}, v_{3}\right\rangle=\left\langle u_{1}+v_{1}, u_{2}+v_{2}, u_{3}+v_{3}\right\rangle$
$-\mathbf{u}=\left\langle-u_{1},-u_{2},-u_{3}\right\rangle \quad c \mathbf{u}=\left\langle c u_{1}, c u_{2}, c u_{3}\right\rangle$
$\mathbf{0}=0 \mathbf{u}=\langle 0,0,0\rangle$

Theorem A

For all vectors $\mathbf{u}, \mathbf{v}, \mathbf{w}$ and the real numbers a and b

$$
\begin{aligned}
& \mathbf{u}+\mathbf{v}=\mathbf{v}+\mathbf{u} \\
&(\mathbf{u}+\mathbf{v})+\mathbf{w}=\mathbf{u}+(\mathbf{v}+\mathbf{w}) \\
& \mathbf{u}+\mathbf{0}=\mathbf{0}+\mathbf{u} \\
& \mathbf{u}+-\mathbf{u}=\mathbf{0} \\
& \mathrm{a}(\mathrm{bu})=(\mathrm{ab}) \mathbf{u} \\
& \mathrm{a}(\mathbf{u}+\mathbf{v})=\mathrm{a} \mathbf{u}+\mathrm{a} \mathbf{v} \\
&(\mathrm{a}+\mathrm{b}) \mathbf{u}=\mathrm{a} \mathbf{u}+\mathrm{b} \mathbf{u} \\
& 1 \mathbf{u}=\mathbf{u} \\
&\|\mathbf{u}\|=\sqrt{u_{1}^{2}+u_{2}^{2}+u_{3}^{2}}
\end{aligned}
$$

$$
\|c \mathbf{u}\|=|c|\|\mathbf{u}\|
$$

EX 5
Let $\mathbf{u}=\langle-1,5,2\rangle$, find $\|\mathbf{u}\|$ and $\|-3 \mathbf{u}\|$.
Also, find a vector, $\hat{\mathbf{u}}$ with the same direction as \mathbf{u} but with magnitude $=1$. (This is called a unit vector)

