

VECTORS (Geometric Approach)

<u>Scalar</u>

<u>Vector</u>

Magnitude

Direction

 $\vec{u} = \vec{v}$ if they have the same magnitude and direction.

<u>zero vector</u> $\Rightarrow \vec{0}$ and $\vec{0} + \vec{u} = \vec{u} + \vec{0} = \vec{u}$

 $-\vec{u} \Rightarrow$

scalar multiple of $\vec{u} \Rightarrow c\vec{u}$, where *c* is a real number,

means we have a vector in the direction of \vec{u} but scaled in length.

Adding vectors $\Rightarrow \vec{u} + \vec{v}$ $/\vec{u}$ \vec{v}

EX 1

Express w in terms of u and v.

Draw w where $\mathbf{w} = \mathbf{v}_{1+}\mathbf{v}_{2+}\mathbf{v}_{3}$

EX 3

Mark pushes on a post in the direction S 30° E with a force of 60 lbs. Dan pushes on the same post in the direction S 60° W with a force of 80 lbs. What are the magnitude and direction of the resulting force?

EX 4

A ship is sailing due south at 20 mph. A man walks west across the deck at 3 mph. What are the magnitude and direction of his velocity relative to the surface of the water?

Vectors (Algebraic Approach)

If we place our vector on a Cartesian Coordinate system with its tail at the origin, then its head will end at some point (u_1 , u_2 , u_3). We say that $\mathbf{u} = \langle u_1, u_2, u_3 \rangle$

 u_1 , u_2 and u_3 are called components of u.

u = v iff $u_1 = v_1$, $u_2 = v_2$, and $u_3 = v_3$

$$\mathbf{u} + \mathbf{v} = \langle u_1, u_2, u_3 \rangle + \langle v_1, v_2, v_3 \rangle = \langle u_1 + v_1, u_2 + v_2, u_3 + v_3 \rangle$$
$$-\mathbf{u} = \langle -u_1, -u_2, -u_3 \rangle \qquad c\mathbf{u} = \langle cu_1, cu_2, cu_3 \rangle$$
$$\mathbf{0} = 0\mathbf{u} = \langle 0, 0, 0 \rangle$$

Theorem A

For all vectors **u**, **v**, **w** and the real numbers *a* and *b*

```
u + v = v + u

(u + v) + w = u + (v + w)

u + 0 = 0 + u

u + -u = 0

a(bu) = (ab)u

a(u + v) = au + av

(a + b)u = au + bu

1u = u
```

 $\|\mathbf{u}\| = \sqrt{u_1^2 + u_2^2 + u_3^2}$

 $||c\mathbf{u}|| = |c| ||\mathbf{u}||$

EX 5 Let $\mathbf{u} = \langle -1, 5, 2 \rangle$, find $||\mathbf{u}||$ and $||-3\mathbf{u}||$. Also, find a vector, $\hat{\mathbf{u}}$ with the same direction as \mathbf{u} but with magnitude = 1. (This is called a unit vector)