

Remember this form of Green's Theorem:

$$
\begin{aligned}
& \oint_{C} \vec{F} \vec{F} \cdot d \vec{r}=\iint_{R} \nabla_{\times} \vec{F} \cdot \hat{k} d A \\
& \text { where } \vec{F}(x, y)=M(x, y) \hat{i}+N(x, y) \hat{j},
\end{aligned}
$$

C is a simple closed positively-oriented curve that encloses a closed region, R, in the $x y$-plane.

It measures circulation along the boundary curve, C.
Stokes's Theorem generalizes this theorem to more interesting surfaces.

Stokes's Theorem

For $\vec{F}(x, y, z)=M(x, y, z) \hat{i}+N(x, y, z) \hat{j}+P(x, y, z) \hat{k}$,

M, N, P have continuous first-order partial derivatives.
S is a 2 -sided surface with continuously varying unit normal, \hat{n},
C is a piece-wise smooth, simple closed curve, positively-oriented
that is the boundary of S,
\hat{T} is the unit tangent vector to C,
then

$$
\left.\oint_{C} \vec{F} \cdot \hat{T} d s=\iint_{S} \nabla_{\times} \vec{F}\right) \cdot \hat{n} d S
$$

EX 1 Verify Stokes's Theorem for $\vec{F}=y^{2} \hat{i}-x \hat{j}+5 z \hat{k}$ if S is the paraboloid $z=x^{2}+y^{2}$ with the circle $x^{2}+y^{2}=1$ as its boundary.

EX 2 Use Stokes's Theorem to calculate $\iint_{S}\left(\nabla_{x} \vec{F}\right) \cdot \hat{n} d S$ for $\vec{F}=x z^{2} \hat{i}+x^{3} \hat{j}+\cos (x z) \hat{k}$ where S is the part of the ellipsoid $x^{2}+y^{2}+3 z^{2}=1$ below the $x y$-plane and \hat{n} is the lower normal.

EX 3 Let S be a solid sphere. Show that $\iint_{S}\left(\nabla_{x} \vec{F}\right) \cdot \hat{n} d S=0$
a) by using Stokes's Theorem
b) by using Gauss's Theorem

