


Remember this form of Green's Theorem:
$F-dr = [| VxFk dA
C R

where = - ~
F(xy) = M(x,y)i + N(x,y)j,

C is a simple closed positively-oriented curve that encloses a
closed region, R, in the xy-plane.

It measures circulation along the boundary curve, C.

Stokes's Theorem generalizes this theorem to more interesting surfaces.

Stokes's Theorem

For F(x,5.z) = M(x,5,2)i+N(xy.z)j+P(x,y.2)k,
M, N, P have continuous first-order partial derivatives.
S is a 2-sided surface with continuously varying unit normal, #,
C is a piece-wise smooth, simple closed curve, positively-oriented

_ that is the boundary of S,
T'is the unit tangent vector to C,
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EX 1 Verify Stokes's Theorem for F =y - xj + 5zk if
S'is the paraboloid z = x? +)?
with the circle x? +y? = [ as its boundary.
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EX 2 Use Stokes's Theorem to calculate [ (VxF)7 dS
for F = xz% + x3 + cos(xz)k 2
where S'is th part of the ellipsoid ,xZ +y? + 3z2=1 )
below the xy-plane and 7 is the lower normal. C. (2__,_ D)
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EX 3 Let S be a solid sphere. Show that || (VxF)-a dS =0
N

a) by using Stokes's Theorem

b) by using Gauss's Theorem
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