

Cartesian Coordinates in
3-Space

A point in 3-space is given by an ordered triple (x, y, z).

Plot $(2,3,4)$

$$
\text { Plot }(-1,4,-3)
$$

not: P, Q means length of line segment from P_{1} to Q

EX 1 Show that these points are vertices of an equilateral triangle. $(4,5,3),(1,7,4),(2,4,6)$
$\triangle P_{1} P_{2} Q$ and $\triangle P_{1} Q R$
are both right triangles.
\Rightarrow can use P_{y} thagurean Tum

- $\left.\mid P_{1} Q\right)^{2}+\left|Q P_{2}\right|^{2}=\left|P_{1} P_{2}\right|^{2}$
and $|P, R|^{2}+|R Q|^{2}=|P, Q|^{2}$
$\Rightarrow \operatorname{sub}$ (2) into (1)

Spheres All points (x, y, z) on a sphere are a fixed distance, r from the center.

$$
r=\sqrt{(x-h)^{2}+(y-k)^{2}+(z-l)^{2}}
$$

So the equation of a sphere with radius r and center (h, k, l) is

$$
r^{2}=(x-h)^{2}+(y-k)^{2}+(z-l)^{2}
$$

Midpoint of the segment (x_{1}, y_{l}, z_{l}) and (x_{2}, y_{2}, z_{2})

$$
m=\left(\frac{x_{1}+x_{2}}{2}, \frac{y_{1}+y_{2}}{2}, \frac{z_{1}+z_{2}}{2}\right)
$$

Ex 2

a) Find the center and radius of this sphere.

$$
x^{2}+y^{2}+z^{2}+2 x-6 y-10 z+34=0
$$

b) Find the equation of the sphere that has a diameter from $(-4,2,1)$ to $(8,3,6)$.

Linear equations in 3-space

$$
A x+B y+C z=D
$$

EX 3 Graph $3 x-4 y+2 z=24$.

EX 4 Graph $3 x+4 y=12$.

