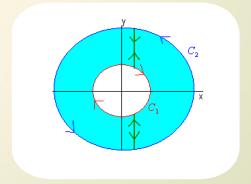
$f_{x} = \frac{\partial^{2}}{\partial x} = \lim_{h \to 0} \frac{f(x+h,y) - f(x,y)}{h}$ $f_{y} = \frac{\partial^{2}}{\partial y} = \lim_{h \to 0} \frac{f(x,y+h) - f(x,y)}{h}$ $\int_{0}^{1} \int_{0}^{2} xy dx dy = \int_{0}^{1} \left[\frac{x^{2}}{2}y\right]_{x=0}^{x=2y} dy$ $= \int_{0}^{1} \frac{(2y)^{2}}{2} y dy = \int_{0}^{1} 2y^{3} dy$ $= \left[\frac{y^{4}}{2}\right]_{y=0}^{y=1} = \frac{1}{2}$

Green's Theorem



Goal:

Describe the relation between the way a fluid flows along or across the boundary of a plane region and the way fluid moves around inside the region.

Circulation or flow integral

Assume $\mathcal{F}(x,y)$ is the velocity vector field of a fluid flow. At each point (x,y) on the plane, $\mathcal{F}(x,y)$ is a vector that tells how fast and in what direction the fluid is moving at the point (x,y).

Assume $r(t)=x(t)\hat{i}+y(t)\hat{j}, t\in [a,b]$, is parameterization of a closed curve lying in the region of fluid flow.

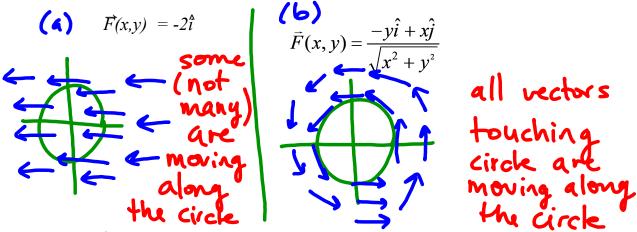
Thus implied director, start

Let $F(x,y)=M(x,y)\hat{i}+N(x,y)\hat{j}$.

We want to measure "how much" fluid is moving along the curve $\vec{r}(t)$.

 $\vec{F}(x(t),y(t))\cdot\vec{r}(t)$ measures the flow along the curre, $C(given by parameterization \vec{r}(t))$, at the pt (x(t),y(t)).

EX 1 Let $\vec{r}(t)$ be the parameterization of the unit circle centered at the origin. Draw these vector fields and think about how the fluid moves around that circle.



When $\vec{F}(x,y)$ is parallel to the tangent line at a point, then the maximum flow is along a circle.

When $\vec{F}(x,y)$ is perpendicular to the tangent line at a point, then there is no flow along the circle.

So $\vec{F}(x,y) \cdot \vec{T}(x,y)$ measures the flow along the circle where $\vec{T}(x,y) = \vec{r}'(t)$.

We define the circulation of \vec{F} along C, a parameterized curve from

t = a to t = b as

$$\int_{a}^{b} \vec{F}(x,y) \cdot \vec{r}'(t) dt = \int_{a}^{b} \vec{F} \cdot d\vec{r} = \int_{t=a}^{t=b} M dx + N dy$$

EX 2 Given
$$C$$
: $x = a \cos t$, $t \in [0, 2\pi]$
 $y = a \sin t$,

find the circulation along C for each of these.

a)
$$\vec{F}_{1}(x,y) = 2\hat{i}$$

(Fide = Max+Ndy

We have

 $M = 2$, $N = 0$
 $dx = -a \sin t dt$
 $= \int_{0}^{2\pi} (2(-a \sin t)) dt$
 $= 2a (1-1) = 0$

b)
$$F_{2}(x,y) = \frac{-y\hat{i} + x\hat{j}}{\sqrt{x^{2} + y^{2}}}$$
 $M = \frac{x}{\sqrt{x^{2} + y^{2}}}$, $N = \frac{x}{\sqrt{x^{2} + y^{2}}}$
 $dx = -a \sin t$ dt
 $dy = a \cos t$ dt
 $M = \frac{a \cos t}{\sqrt{a^{2}}} = -\sin t$
 $N = \frac{a \cos t}{\sqrt{a^{2}}} = \cot t$
 $S = \frac{a \cos t}{\sqrt{a^{2}}} = \cot t$

Flux across a curve

Given $\vec{F}(x,y) = M\hat{i} + N\hat{j}$ (vector velocity field) and a curve C, with the parameterization $r(t) = x(t)\hat{i} + y(t)\hat{j}$, $t \in [a,b]$, such that C is a positively oriented, simple, closed curve.

We want to know the rate at which a fluid is entering and leaving the area of the region enclosed by a curve, C. This is called flux.

 $F(x,y) \cdot \overline{n}(x,y)$ is the component of F perpendicular to the curve,

so flux =
$$\int_{c}^{\pi} \vec{F} \cdot \vec{n} \, ds$$

Now to find
$$\vec{n} = \vec{T} \times \hat{k}$$

(unit
$$= \left(\frac{dx}{ds}\hat{i} + \frac{dy}{ds}\hat{j}\right) \times \hat{k}$$

$$= \frac{dy}{ds}\hat{i} - \frac{dx}{ds}\hat{j}$$

This means

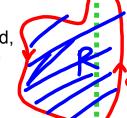
$$\vec{F} \cdot \vec{n} = M \frac{dy}{ds} - N \frac{dx}{ds}$$
flux =
$$\oint_C \left(M \frac{dy}{ds} - N \frac{dx}{ds} \right) ds$$

$$= \oint_C M dy - N dx$$

Two Forms of Green's Theorem in The Plane

Let
$$\vec{F}(x,y) = M\hat{i} + N\hat{j}$$

Let C be a simple, closed, positively oriented curve enclosing a region R in the xy-plane.



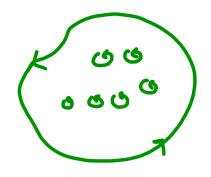
Let
$$\vec{F}(x,y) = M\vec{i} + N\vec{j}$$

Let *C* be a simple, closed, positively oriented curve enclosing a region *R* in the *xy*-plane.

$$\oint_{C} M dy - N dx = \iint_{R} \left(\frac{\partial M}{\partial x} + \frac{\partial N}{\partial y} \right) dx \, dy$$

$$\oint_C \vec{F} \cdot \vec{n} \ ds = \iint_R \nabla \cdot \vec{F} \ dA$$

(flux across the boundary
of C) $\nabla \cdot \vec{F} = A \cdot \vec{F}$



$$\oint_C M \, dx + N \, dy = \iint_R \left(\frac{\partial N}{\partial x} - \frac{\partial M}{\partial y} \right) dx \, dy$$

$$\oint_C \vec{F} \cdot d\vec{r} = \oint_C \vec{F} \cdot \vec{T} \, dt = \iint_R \nabla \times \vec{F} \cdot \hat{k} \, dA$$

(circulation along boundary curve c)

(PXF). k measures

the "microscopic"

circulation of the vector

field at pt (xy) in R

PXF measures how

much the vector field

circulates at a pt

(PXF). k gives magnitude

of that circulation

$$\frac{F}(x,y) = (x-y)\hat{i} + x\hat{j}$$
and the region R bounded by the circle

$$C: F(t) = (\cos t)\hat{i} + (\sin t)\hat{j}, \ t \in [0,2\pi]$$

$$Flux$$

$$= \begin{cases}
N_x = 1 \\
N_y = 1
\end{cases}$$

$$N_y = 1$$

= (T (r dr d0

 $= 5 \pi \left(\frac{5}{\sqrt{5}} \right) \Big|_{1}^{9} = 1 \ln \sqrt{2}$

8

EX 6 Evaluate the integral $\oint_C (xy \, dy - y^2 \, dx)$ where C is the square

cut from the first quadrant by the lines x = I and y = I.

$$\begin{cases} (xy \, dy - y^2 \, dx) & C_1 \\ (y \, dy - y^2 \, dx) & C_2 \\ (y \, dy - y^2 \, dx) & C_3 \\ (y \, dy - y^2 \, dx) & C_4 \\ (y \, dy - y^2 \, dx) & C_5 \\ (y \, dy - y^2 \, dx) & C_6 \\ (y \, dy - y^2 \, dx) & C_7$$

EX 7 Calculate the flux of the field $\vec{F}(x,y) = x\hat{i} + y\hat{j}$ across the square bounded by the lines $x = \pm 1$ and $y = \pm 1$.

(by Sieun's Thin)

(by Sieun's Thin)

(hy Sieun's Thin)

How do we use Green's Thm to create another way to find arra of region R? We know $A = \iint_R dA$ choose M and N such that $\frac{\partial N}{\partial x} - \frac{\partial M}{\partial y} = 1$

because Green's Thm says

\[\left(\frac{\partial N}{\partial x} - \frac{\partial M}{\partial y} \right) dA = \frac{\partial M}{\partial x} + Ndy

if $\frac{9x}{9N} - \frac{9A}{9M} = 1$ we det

 $A = \iint_{R} dA = \oint_{C} M dx + N dy$

let N= \frac{1}{2}x, M = \frac{1}{2}y

(check: $N_x - M_y = \frac{1}{2} - \frac{1}{2} = 1$)

=> A= \(dA = \ \frac{1}{2}y dx + \frac{1}{2}x dy \)