

Recall the Fundamental Theorem of Calculus.

$$\int_{a}^{b} f'(x)dx = f(b) - f(a)$$

We would like an analogous theorem for line integrals.

Fundamental Theorem of Line Integrals

Let *C* be the curve given by the parameterization $\vec{r}(t)$, $t \in [a,b]$, such that $\vec{r}(t)$ is differentiable. If $f(\vec{r})$ is continuously differentiable on an open set containing *C*,

then

$$\int_{C} \nabla f(\vec{r}) \cdot d\vec{r} = f(\vec{r}(b)) - f(\vec{r}(a))$$

EX 1 Find work done by abla f along a curve going from

(1,1,1) to (4,-1,2), given
$$f(r) = \frac{c}{\|\vec{r}\|} \nabla f = \frac{-c\vec{r}}{\|\vec{r}\|}$$
.

A set, *D*, is called a <u>Path-Connected Set</u> if any 2 points in *D* can be joined by a piece-wise smooth curve lying entirely in *D*.

Example Non-example

What does it mean to be independent of path?

Independence of Path Theorem

Let $\vec{F}(\vec{r})$ be continuous on an open connected set *D*.

Then $\int_C \vec{F}(\vec{r}) \cdot d\vec{r}$ is independent of any path, *C*, in *D* iff $\vec{F}(\vec{r}) = \nabla f(\vec{r})$ for some $f(\vec{r})$ (scalar function), i.e. if $\vec{F}(\vec{r})$ is a conservative vector field on *D*.

Equivalent Conditions for Line Integrals

Let $\vec{F}(\vec{r})$ be continuous on an open connected set *D*. The following statements are equivalent.

a)
$$\vec{F} = \nabla f$$
 for some f (i.e. \vec{F} is conservative on D).
b) $\int_{C} \vec{F}(\vec{r}) \cdot d\vec{r}$ is independent of the path, C , in D .
c) $\int_{C} \vec{F}(\vec{r}) \cdot d\vec{r} = 0$ for every closed path in D .

Theorem

Let $\vec{F} = M\hat{i} + N\hat{j} + P\hat{k}$ with *M*, *N*, *P* continuously differentiable on a ball, *D*.

Then \vec{F} is conservative $\Leftrightarrow \nabla \times \vec{F} = \vec{0}$.

Note:

If
$$\vec{F} = M\hat{i} + N\hat{j}$$

then $\nabla \times \vec{F} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ \frac{\partial}{\partial x} & \frac{\partial}{\partial y} & 0 \\ M & N & 0 \end{vmatrix} = \hat{k} \left(\frac{\partial N}{\partial x} - \frac{\partial M}{\partial y} \right)$

and

$$\nabla \times \vec{F} = \vec{0} \Longrightarrow \frac{dN}{dx} = \frac{dM}{dy}$$

EX 2 Is
$$\vec{F} = (12x^2 + 3y^2 + 5y) \hat{i} + (6xy - 3y^2 + 5x) \hat{j}$$

conservative?

EX 3 Using \vec{F} from Example 1, find *f* such that $\vec{F} = \nabla f$.

EX 4 Using $\vec{F} = (12x^2 + 3y^2 + 5y) \hat{i} + (6xy - 3y^2 + 5x) \hat{j}$ calculate $\int_C \vec{F}(\vec{r}) \cdot d\vec{r}$ where *C* is any path from (0,0) to (2,1). EX 5 Show that the line integral $\int_C ((yz+1)dx + (xz+1)dy + (xy+1)dz)$

is independent of path and evaluate the integral, where C is a curve from (0,1,0) to (1,1,1).

EX 6 Let $\vec{F} = (1 + 2xy \sin(x^2 y))\hat{i} + (1 + x^2 \sin(x^2 y))\hat{j}$

Is \vec{F} conservative? If yes, then find *f* such that $\vec{F} = \nabla f$.

EX 7 Evaluate
$$\int_{(0,0)}^{(1,\pi/2)} \left(e^x \sin y dx + e^x \cos y dy \right).$$