

Recall the Fundamental Theorem of Calculus.

$$\int_{a}^{b} f'(x)dx = f(b) - f(a)$$

We would like an analogous theorem for line integrals.

Fundamental Theorem of Line Integrals

Let C be the curve given by the parameterization $\vec{r}(t)$, $t \in [a,b]$, such that $\vec{r}(t)$ is differentiable. If $f(\vec{r})$ is continuously differentiable on an open set containing C,

then

$$\int_{C} \nabla f(\vec{r}) \cdot d\vec{r} = f(\vec{r}(b)) - f(\vec{r}(a))$$

EX 1 Find work done by
$$\sqrt{g}$$
 along a curve going from

(1,1,1) to (4,-1,2), given
$$f(r) = \frac{c}{\|\vec{r}\|} \nabla f = \frac{-c\vec{r}}{\|\vec{r}\|}$$
.

$$=-\frac{\sqrt{|x|^2}}{\sqrt{2}}\frac{du}{\sqrt{u}}$$

$$= -\frac{c}{2}(2\sqrt{u})|_{3}^{21} = -c(21-\sqrt{3})$$
$$= \sqrt{3}c(1-\sqrt{7})$$

A set, D, is called a <u>Path-Connected Set</u> if any 2 points in D can be joined by a piece-wise smooth curve lying entirely in D.

Equivalent Conditions for Line Integrals

Let $\vec{F}(\vec{r})$ be continuous on an open connected set D. The following statements are equivalent.

- a) $\vec{F} = \nabla f$ for some f (i.e. \vec{F} is conservative on D).
- b) $\int_{C} \vec{F}(\vec{r}) \cdot d\vec{r}$ is independent of the path, C, in D.
- $c)\int_C \vec{F}(\vec{r}) \cdot d\vec{r} = 0$ for every closed path in D.
- (b) => (c) because for any closed loop in D start A = end pt B.

Theorem

Let $\vec{F} = M\hat{i} + N\hat{j} + P\hat{k}$ with M, N, P continuously differentiable on a ball, D.

Then \vec{F} is conservative $\Leftrightarrow \nabla \times \vec{F} = \vec{0}$.

Note:

If
$$\vec{F} = M\hat{i} + N\hat{j}$$
 (how to then $\nabla \times \vec{F} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ \frac{\partial}{\partial x} & \frac{\partial}{\partial y} & 0 \\ M & N & 0 \end{vmatrix} = \hat{k} \left(\frac{\partial N}{\partial x} - \frac{\partial M}{\partial y} \right)$ 2-d "curl" and $\nabla \times \vec{F} = \vec{0} \Rightarrow \frac{dN}{dx} = \frac{dM}{dy}$

Note:

F conservative
$$\Rightarrow \vec{F} = \nabla f$$

 $\iff M(+N) + P\hat{k} = f_*(+f_*) + f_* \hat{k}$
for some f . Since derivatives are continuous
for $M,N,P,then$

$$M_y = f_{xy}$$
, $N_x = f_{yx}$
but $f_{xy} = f_{yx}$, then $M_y = N_x$
Similarly $\frac{\partial M}{\partial z} = \frac{\partial P}{\partial x}$, $\frac{\partial P}{\partial y} = \frac{\partial P}{\partial y} \in \nabla \times \vec{F} = \vec{O}_x$

EX 2 Is
$$\vec{F} = (12x^2 + 3y^2 + 5y) \hat{i} + (6xy - 3y^2 + 5x) \hat{j}$$
conservative?

$$\frac{\partial M}{\partial y} = 6y + 5$$

$$\frac{\partial N}{\partial x} = 6y + 5$$

$$\Rightarrow \frac{\partial M}{\partial x} = \frac{\partial N}{\partial x} = \frac{\partial N}{\partial x}$$

$$\Rightarrow \vec{F} = (12x^2 + 3y^2 + 5y) \hat{i} + (6xy - 3y^2 + 5x) \hat{j}$$

$$\frac{\partial M}{\partial y} = 6y + 5$$

$$\Rightarrow \vec{F} = (12x^2 + 3y^2 + 5y) \hat{i} + (6xy - 3y^2 + 5x) \hat{j}$$

$$\frac{\partial M}{\partial y} = \frac{\partial M}{\partial y} = \frac{\partial N}{\partial x}$$

$$\Rightarrow \vec{F} = (3x^2 + 3y^2 + 5y) \hat{i} + (6xy - 3y^2 + 5x) \hat{j}$$

$$\Rightarrow \vec{F} = (6xy - 3y^2 + 5x) \hat{j}$$

$$\Rightarrow \vec{F} = (6xy - 3y^2 + 5x) \hat{j}$$

$$\Rightarrow \vec{F} = (6xy - 3y^2 + 5x) \hat{j}$$

$$\Rightarrow \vec{F} = (6xy - 3y^2 + 5x) \hat{j}$$

$$\Rightarrow \vec{F} = (6xy - 3y^2 + 5x) \hat{j}$$

$$\Rightarrow \vec{F} = (6xy - 3y^2 + 5x) \hat{j}$$

$$\Rightarrow \vec{F} = (6xy - 3y^2 + 5x) \hat{j}$$

$$\Rightarrow \vec{F} = (6xy - 3y^2 + 5x) \hat{j}$$

EX 4 Using
$$\vec{F} = (12x^2 + 3y^2 + 5y)\hat{i} + (6xy - 3y^2 + 5x)\hat{j}$$

calculate $\int_{C} \vec{F}(\vec{r}) \cdot d\vec{r}$ where C is any path from $(0,0)$ to $(2,1)$.

Know from Ex 2 d 3 work:

 \vec{F} is conservative and

 $f(x,y) = 4x^3 + 3y^2 \times + 5 \times y - y^3 + K$

We also know than that $\int_{C} \vec{F}(\vec{r}) \cdot d\vec{r}$ is independent of path

and from Fundamental True of Line Integrals,

 $\int_{C} \nabla f(\vec{r}) \cdot d\vec{r} = f(\vec{r}(b)) - f(\vec{r}(a))$.

 $\Rightarrow \int_{C} \vec{F}(\vec{r}) \cdot d\vec{r} = \int_{C} \nabla f(\vec{r}) \cdot d\vec{r} = f(2,1) - f(0,0)$
 $= (4(2^3) + 3(1^2, 2) + 5(2,1) - 1^3) - 0$
 $= 4(8) + 6 + 10 - 1 = 47$

EX 5 Show that the line integral
$$\int_{C}^{C} (yz+1)dx + (xz+1)dy + (xy+1)dz$$
is independent of path and evaluate the integral, where C is a curve from $(0,1,0)$ to $(1,1,1)$.

$$F(x_1y_1,z) = (yz+1)^2 + (xz+1)^2 + (xy+1)^2$$

$$\nabla x F = \begin{vmatrix} 7 & 1 & 1 \\ 3x & 3y & 3z \end{vmatrix}$$

$$|yz+1| & xz+1| & xy+1 \end{vmatrix}$$

$$= C(x-x) + J(y-y) + F(z-z) = 0$$

$$\Rightarrow F(x-x) + J(y-y) + F(z-z) = 0$$

$$\Rightarrow F(x-y) + J(y-y) + J(y-z) = 0$$

$$\Rightarrow F(x-y) + J(y-y) + J(y-z) = 0$$

$$\Rightarrow F(x-y) + J(y-y) + J(y-z) = 0$$

$$\Rightarrow F(x-y) + J(y-z) + J(y-z) + J(y-z) = 0$$

$$\Rightarrow F(x-y) + J(y-z) + J(y-z) + J(y-z) + J(y-z) = 0$$

$$\Rightarrow F(x-y) + J(y-z) + J(y-$$

EX 6 Let
$$\vec{F} = (1 + 2xy \sin(x^2 y))\hat{i} + (1 + x^2 \sin(x^2 y))\hat{j}$$

(1) Is \vec{F} conservative? (check $\nabla \times \vec{F}$ to see if its \vec{O})

(2) If yes, then find f such that $\vec{F} = \nabla f$.

$$\begin{array}{c|c}
\hline
0 & \nabla x \vec{F} = \begin{bmatrix} 7 & 3 & 3 \\ 3 & 3 & 3 \\ 1 + 2xy\sin(x^2y) & 1 + x^2\sin(x^2y) & 0 \\
&= 1^2(0-0) - 1^2(0-0) \\
&+ 1^2(2x\sin(x^2y) + 2x^3y\cos(x^2y)) \\
&- (2x\sin(x^2y) + 2x^3y\cos(x^2y)) \\
&= 0 \\
&= 0
\end{array}$$

$$\begin{array}{c|c}
\hline
+ 1 & conservative \\
\hline
- (2x\sin(x^2y) + 2x^3y\cos(x^2y))
\end{array}$$

That
$$f$$
 such that $f = \nabla f$.
we know $f_x = 1 + 2 \times y \sin(x^2 y)$
 $f = \int (1 + 2 \times y \sin(x^2 y)) dx$
 $O f = x - \cos(x^2 y) + C(y)$
we also know $f_y = 1 + x^2 \sin(x^2 y)$

$$\exists |1+x^{2} \leq m(x^{2}y) = x^{2} \leq m(x^{2}y) + C'(y)$$

$$\iff |1-c'(y) \implies (|y| = \int |1 dy = y + |x|)$$

$$\implies f(x,y) = x - \cos(x^{2}y) + y + |x|$$

EX 7 Evaluate
$$\int_{(0,0)}^{(1,\pi/2)} \left(e^x \sin y dx + e^x \cos y dy \right).$$

- 1) prove == exsiny ?+ excosy; is consenutive.
- 2) Find f(x,y) such that F= Vf.
- 1) $\frac{\partial m}{\partial y} = e^{\times}(osy), \frac{\partial N}{\partial x} = e^{\times}(osy) \Rightarrow \nabla x\vec{F} = \vec{O}$ i.e. \vec{F} conservative.

2)
$$f_x = e^x \sin y \Rightarrow f = \int (e^x \sin y) dx$$

 $f_x = e^x \sin y + C(y)$

=)
$$C(y) = \int 0 dy = k$$

=) $E(y) = \int 0 dy = k$

3)
$$\int_{(0,0)}^{(1,\frac{\pi}{2})} \pm i dt = f(1,\frac{\pi}{2}) - f(0,0)$$

= $(e^{1}\sin(\frac{\pi}{2}) + k) - (e^{0}\sin 0 + k)$
= $e(1) - 0$
= e