

Recall the Fundamental Theorem of Calculus.

$$
\int_{a}^{b} f^{\prime}(x) d x=f(b)-f(a)
$$

We would like an analogous theorem for line integrals.

Fundamental Theorem of Line Integrals

Let C be the curve given by the parameterization $\vec{r}(t), t \in[a, b]$, such that $\vec{r}(t)$ is differentiable. If $f(\vec{r})$ is continuously differentiable on an open set containing C,
then

$$
\int_{C} \nabla f(\stackrel{\rightharpoonup}{r}) \cdot d \stackrel{\rightharpoonup}{r}=f(\stackrel{\rightharpoonup}{r}(b))-f(\stackrel{\rightharpoonup}{r}(a))
$$

EX 1 Find work done by ∇ along a curve going from

$$
\underbrace{(1,1,1) \text { to }(4,-1,2) \text {, given } f(r)=\frac{c}{\|\vec{r}\|} \nabla f=\frac{-\vec{r}}{\|\vec{r}\|}}_{C} \text {. }
$$

$$
C: \vec{r}(t)=? \quad\left\{\begin{array}{l}
x=1+3 t \\
y=1+-2 t \\
t=1+t
\end{array} \quad t \in[0,1]\right.
$$

$$
\vec{r}(t)=\langle 1+3 t, 1-2 t, 1+t\rangle
$$

$$
\vec{r}^{\prime}(t)=\langle 3,-2,1\rangle
$$

$$
W=\int_{C} \nabla f \cdot d \vec{r}=\int_{0}^{1}-c \vec{r}
$$

$$
=-c \int_{0}^{1} \frac{1+3 t, 1-2 t, 1+t\rangle \cdot\langle 3,-2,1\rangle d t}{\sqrt{(1+3 t)^{2}+(1-2 t)^{2}+(1+t)^{2}}}
$$

$$
=-c \int_{0}^{1} \frac{(3+9 t-2+4 t+1+t)}{\sqrt{3+4 t+14 t^{2}}} d t
$$

$$
=-c \int_{0}^{1} \frac{14 t+2}{\sqrt{14 t^{2}+4 t+3}} d t
$$

$$
\left.\left.\begin{array}{l}
u=14 t^{2}+4 t+3 \\
d u=(28 t+4) d t \\
\frac{1}{2} d u=(14 t+2) d t \\
t=0, u=3
\end{array} \right\rvert\,=-\frac{1}{2}\right)_{3}^{21} \frac{d u}{\sqrt{u}}=-\left.\frac{c}{2}(2 \sqrt{u})\right|_{3} ^{21}=-c(\sqrt{21}-\sqrt{3})
$$

A set, D, is called a Path-Connected Set if any 2 points in D can be joined by a piece-wise smooth curve lying entirely in D.

What does it mean to be independent of path?
$\int_{c} \vec{F}(\vec{r}) \cdot d \vec{r}$ is independent of path in D if 'for any 2 pts, A and B, in D, the lime integral has the same value for all paths C in D, positively oriented from A to B. Independence of Path Theorem

Let $\vec{F}(\vec{r})$ be continuous on an open connected set D.
Then $\int_{C} \vec{F}(\vec{r}) \cdot d \vec{r}$ is independent of any path, C, in D iff $\vec{F}(\vec{r})=\nabla f(\vec{r})$ for some $f(\vec{r})$ (scalar function),
ie. if $\vec{F}(\vec{r})$ is a conservative vector field on D.
(f is called the potential f_{n})

Equivalent Conditions for Line Integrals
Let $\vec{F}(\vec{r})$ be continuous on an open connected set D. The following statements are equivalent.
\Longleftrightarrow a) $\vec{F}=\nabla_{f}$ for some f (ie. \vec{F} is conservative on D).
\Longleftrightarrow b) $\int_{C} \vec{F}(\vec{r}) \cdot d \vec{r}$ is independent of the path, C, in D.
\Longleftrightarrow c) $\int_{C} \vec{F}(\vec{r}) \cdot d \stackrel{\rightharpoonup}{r}=0$ for every closed path in D.
$(b) \Rightarrow(c)$ because for any closed loop in D start $A=$ end pt B.

Theorem
Let $\vec{F}=M \hat{i}+N \hat{j}+P \hat{k}$ with M, N, P continuously differentiable on a ball, D.
Then \vec{F} is conservative $\Leftrightarrow \nabla \times \vec{F}=\overrightarrow{0}$.
Note:
If $\quad \vec{F}=M \hat{i}+N \hat{j}$
(how to then $\nabla \times \vec{F}=\left|\begin{array}{lll}\hat{i} & \hat{j} & \hat{k} \\ \frac{\partial}{\partial x} & \frac{\partial}{\partial y} & 0 \\ M & N & 0\end{array}\right|=\hat{k}\left(\frac{\partial N}{\partial x}-\frac{\partial M}{\partial y}\right) \quad$ 2-d "curl")
and

$$
\nabla \times \vec{F}=\overrightarrow{0} \Rightarrow \frac{d N}{d x}=\frac{d M}{d y}
$$

Note:
\vec{F} consecrative $\Rightarrow \vec{F}=\nabla f$

$$
\Longleftrightarrow M \hat{\imath}+N \hat{\jmath}+P \hat{k}=f_{x} \hat{\imath}+f_{y} \hat{\jmath}+f_{z} \hat{k}
$$

for some f. Since denvatives are continuous for M, N, P, then

$$
M_{y}=f_{x y}, \quad N_{x}=f_{y x}
$$

but $f_{x y}=f_{y x}$, then $m_{y}=N_{x}$
similarly $\frac{\partial M}{\partial z}=\frac{\partial P}{\partial x}, \frac{\partial N}{\partial z}=\frac{\partial P}{\partial y} \Leftrightarrow \nabla \times \vec{F}=\overrightarrow{0}_{+}$

$$
\begin{aligned}
& \text { EX } 2 \begin{array}{l}
\text { Is } \vec{F}=\left(12 x^{2}+3 y^{2}+5 y\right. \\
\text { conservative? }
\end{array} \hat{i} \hat{i}+\underbrace{\left(6 x y-3 y^{2}+5 x\right.}_{\boldsymbol{N}}) \hat{j} \\
& \frac{\partial m}{\partial y}=6 y+5 \\
& \frac{\partial N}{\partial x}=6 y+5 \\
& \Rightarrow \frac{\partial m}{\partial y}=\frac{\partial N}{\partial x} \\
& \Rightarrow \vec{F} \text { is conservative }
\end{aligned}
$$

EX 3 Using \vec{F} from Example 1, find f such that $\vec{F}=\nabla f$.
know $\vec{F}=\nabla f \Leftrightarrow M=f_{x}, N=f_{y}$

$$
\begin{aligned}
& f_{x}=12 x^{2}+3 y^{2}+5 y \\
& f=\int\left(12 x^{2}+3 y^{2}+5 y\right) d x
\end{aligned}
$$

(1) $f=\frac{12 x^{3}}{3}+3 y^{2} x+5 y x+C(y)$
know $f_{y}=6 x y-3 y^{2}+5 x \quad\left(f_{y}=N\right)$
\rightarrow find $f_{y}=6 y x+5 x+C^{\prime}(y)$
equate: $\quad 6 x y-3 y^{2}+5 x=6 y x+5 x+C^{\prime}(y)$

$$
\begin{aligned}
& -3 y^{2}=C 1(y) \\
& \frac{C(y)=\int-3 y^{2} d y}{2}=-y^{3}+k
\end{aligned}
$$

(2)

$$
\Rightarrow f=4 x^{3}+3 x y^{2}+5 x y-y^{3}+k
$$

EX 4 Using $\vec{F}=\left(12 x^{2}+3 y^{2}+5 y\right) \hat{i}+\left(6 x y-3 y^{2}+5 x\right) \hat{j}$
calculate $\int_{C} \vec{F}(\vec{r}) \cdot d \vec{r}$ where C is any path from $(0,0)$ to $(2,1)$.
know from Ex 2 \& 3 work:
\vec{F} is conservative and

$$
f(x, y)=4 x^{3}+3 y^{2} x+5 x y-y^{3}+k
$$

we also know then that $\int_{c} \vec{F}(\vec{F}) \cdot d \vec{r}$ is independent of path
and from Fund amental Thu of line Integrals,

$$
\begin{aligned}
\int_{c} \nabla f(\vec{r}) \cdot d \vec{r} & =f(\vec{r}(b))-f(\vec{r}(a)) . \\
\Rightarrow \int_{c} \vec{F}(\vec{r}) \cdot d \vec{r} & =\int_{c} \nabla f(\vec{r}) \cdot d \vec{r}=f(2,1)-f(0,0) \\
& =\left(4\left(2^{3}\right)+3\left(1^{2} \cdot 2\right)+5(2 \cdot 1)-1^{3}\right)-0 \\
& =4(8)+6+10-1=47
\end{aligned}
$$

EX 5 Show that the line integral $\int_{C}(\underbrace{(y z+1) d x+(x z+1) d y+(x y+1) d z})$
is independent of path and evaluate the integral, where C is a curve from $(0,1,0)$ to $(1,1,1)$.

$$
\begin{aligned}
& \vec{F}(x, y, z)=(y z+1) \hat{\imath}+(x z+1) \hat{\jmath}+(x y+1) \hat{k} \\
& \begin{aligned}
\nabla & \times \vec{F}=\left|\begin{array}{ccc}
\hat{\imath} & \hat{\jmath} & \hat{k} \\
\frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\
y z+1 & x z+1 & x y+1
\end{array}\right| \\
& =\hat{\imath}(x-x)+-\hat{\jmath}(y-y)+\hat{k}(z-z)=\overrightarrow{0}
\end{aligned}
\end{aligned}
$$

$\Rightarrow \vec{F}$ conservative vector field.
$\Rightarrow f$ exists, such that $\vec{F}=\nabla f$.

$$
f_{x}=y z+1 \Rightarrow f=\int(y z+1) d x=y z x+x+C(y, z)
$$

also know $f_{y}=x z+1$
and from (1), we get $f_{y}=z x+\frac{\partial c\left(y_{1} z\right)}{\partial y}$
equate: $\begin{aligned} & x z+1=x z+\frac{\partial c(y, z)}{\partial y} \\ \Leftrightarrow & 1=\frac{\partial C(y, z)}{\partial y}\end{aligned}$

$$
\begin{aligned}
& \Leftrightarrow 1=\frac{\partial C(y, z)}{\partial y} \\
& C(y, z)=\int 1 d y=y+D(z)
\end{aligned}
$$

\Rightarrow (2) $f=x y z+x+y+D(z)$
we know $f_{z}=x y+1$
and from (2), $f_{z}=x y+D^{\prime}(z)$
equate: $\quad x y+1=x y+D^{\prime}(z)$

$$
\Rightarrow 1=D^{\prime}(z) \Rightarrow D(z)=\int 1 d z=z+K
$$

(3) $\Rightarrow f(x, y, z)=x y z+x+y+z+K$

Now evaluate the line integral:

$$
\begin{aligned}
\int_{C} \vec{F}(\vec{r}) & \cdot d \vec{r}=f(1,1,1)-f(0,1,0) \\
& =(1+1+1+1)-(0+0+1+0) \\
& =3
\end{aligned}
$$

EX 6 Let $\vec{F}=\left(1+2 x y \sin \left(x^{2} y\right) \hat{i}+\left(1+x^{2} \sin \left(x^{2} y\right) \hat{j}\right.\right.$
(1) Is \vec{F} conservative? (check $\nabla \times \vec{F}$ to sec if it's \vec{O}) (2) If yes, then find f such that $\vec{F}=\nabla f$.
(1)

$$
\begin{aligned}
\nabla \times \vec{F} & =\left|\begin{array}{ccc}
\hat{\imath} & \hat{\jmath} & \hat{k} \\
\frac{\partial}{\partial x} & \frac{\partial}{\partial y} & 0 \\
1+2 x y \sin \left(x^{2} y\right) & 1+x^{2} \sin \left(x^{2} y\right) & 0
\end{array}\right| \\
& =\hat{\imath}(0-0)-\hat{\jmath}(0-0) \\
& +\hat{k}\left(2 x \sin \left(x^{2} y\right)+2 x^{3} y \cos \left(x^{2} y\right)\right. \\
& \left.=\overrightarrow{0}-\left(2 x \sin \left(x^{2} y\right)+2 x^{3} y \cos \left(x^{2} y\right)\right)\right)
\end{aligned}
$$

$$
\Rightarrow \bar{F} \text { IS conservative. }
$$

(2) find f such that $\vec{F}=\nabla f$.
we know $f_{x}=1+2 x y \sin \left(x^{2} y\right)$

$$
\Rightarrow f=\int\left(1+2 x y \sin \left(x^{2} y\right)\right) d x
$$

(1) $f=x-\cos \left(x^{2} y\right)+C(y)$
we also know $f_{y}=1+x^{2} \sin \left(x^{2} y\right)$
and from (1), $f_{y}=x^{2} \sin \left(x^{2} y\right)+C^{\prime}(y)$

$$
\begin{aligned}
& \Rightarrow 1+x^{2} \sin \left(x^{2} y\right)=x^{2} \sin \left(x^{2} y\right)+c^{\prime}(y) \\
& \Leftrightarrow 1=c^{\prime}(y) \Rightarrow\left((y)=\int 1 d y=y+k\right.
\end{aligned}
$$

(2) $\Rightarrow f(x, y)=x-\cos \left(x^{2} y\right)+y+k$

1) prove $\vec{F}=e^{x} \sin y \hat{\imath}+e^{x} \cos y \hat{\jmath}$ is consenctive.
2) Find $f(x, y)$ such that $\vec{F}=\nabla f$.
3) using f and Fund. Thu of line Integrals,

$$
\int_{c} \vec{F} \cdot d \vec{r}=f(1, \pi / 2)-f(0,0) .
$$

1) $\frac{\partial m}{\partial y}=e^{x} \cos y, \quad \frac{\partial N}{\partial x}=e^{x} \cos y \Rightarrow \nabla x \vec{F}=\overrightarrow{0}$ i.e. \vec{F} consenative.
2)

$$
\begin{aligned}
f_{x}=e^{x} \sin y \Rightarrow f & =\int\left(e^{x} \sin y\right) d x \\
\text { (1) } f & =e^{x} \sin y+c(y)
\end{aligned}
$$

we know $f_{y}=e^{x} \cos y$ and from (1) $f_{y}=e^{x} \cos y+c^{\prime}(y)$ equate:

$$
\begin{gathered}
\quad e^{x} \cos y=e^{x} \cos y+c^{\prime}(y) \\
0=c^{\prime}(y) \\
\Rightarrow C(y)=\int o d y=k
\end{gathered}
$$

$$
\Rightarrow(2) \quad f=e^{x} \sin y+k
$$

3)

$$
\begin{aligned}
\int_{(0,0)}^{\left(1, \frac{\pi}{2}\right)} \vec{F} \cdot d \vec{r} & =f(1, \pi / 2)-f(0,0) \\
& =\left(e^{1} \sin \left(\frac{\pi}{2}\right)+k\right)-\left(e^{0} \sin 0+k\right) \\
& =e(1)-0 \\
& =e
\end{aligned}
$$

