

Let's review parameterization of curves.

The length of a parameterized curve in 2-D $(x(t), y(t)), t \in[a, b]$ is given by

$$
L=\int_{a}^{b} \sqrt{\left(\frac{d x}{d t}\right)^{2}+\left(\frac{d y}{d t}\right)^{2}} d t
$$

In 3-D if $\vec{r}(t)=x(t) \hat{i}+y(t) \hat{j}+z(t) \hat{k}$,
then the length of a curve is

$$
L=\int_{a}^{b} \sqrt{\left(\frac{d x}{d t}\right)^{2}+\left(\frac{d y}{d t}\right)^{2}+\left(\frac{d z}{d t}\right)^{2}} d t
$$

Suppose $f(x, y)$ is a function whose domain contains the curve

$$
C: \vec{r}(t)=x(t) \hat{i}+y(t) \hat{j}, \quad t \in[a, b] .
$$

The line integral of f along the curve C from a to b is defined
as $\int_{C} f(x, y) d s$
where $d s=$ arc length differential.

We know that $\quad d s=\sqrt{\left(\frac{d x}{d t}\right)^{2}+\left(\frac{d y}{d t}\right)^{2}} d t$

Line integral $=\int_{a}^{b} f(x(t), y(t)) \sqrt{\left(\frac{d x}{d t}\right)^{2}+\left(\frac{d y}{d t}\right)^{2}} d t=\int_{\mathrm{C}} f(x, y) d s$

In 3 variables

$$
\begin{aligned}
\int_{C}^{\text {variables }} f(x, y, z) d s & =\int_{a}^{b} f(x(t), y(t), z(t))|\vec{v}(t)| d t \\
& =\int_{a}^{b} f(x(t), y(t), z(t)) \sqrt{\left(\frac{d x}{d t}\right)^{2}+\left(\frac{d y}{d t}\right)^{2}+\left(\frac{d z}{d t}\right)^{2}} d t
\end{aligned}
$$

where

$$
\begin{aligned}
& \vec{r}(t)=x(t) \hat{i}+y(t) \hat{j}+z(t) \hat{k} \\
& \vec{v}(t)=x^{\prime}(t) \hat{i}+y^{\prime}(t) \hat{j}+z^{\prime}(t) \hat{k}
\end{aligned}
$$

EX 1 The figure shows two different paths, $C_{1} \cup C_{2}$ and C_{3}.
Find $\int_{C_{3}}\left(x-3 y^{2}+z\right) d s$ and $\int_{c_{1} \cup C_{2}}\left(x-3 y^{2}+z\right) d s$.

EX 2 A thin wire is bent in the shape of the semicircle

$$
\begin{aligned}
& x=a \cos t, \quad t \in[0, \pi], \quad a>0 \\
& y=a \sin t
\end{aligned}
$$

If the density of the wire is proportional to the distance from the x-axis, find the mass of the wire.

Work

The goal is to calculate the work done by a vector field $\overrightarrow{F(x, y, z)}$ in moving an object along a curve C with parameterization.
$C: \vec{r}(t)=x(t) \hat{i}+y(t) \hat{j}+z(t) \hat{k}, t \in[a, b]$

The work done to move the object at (x, y, z) by a small vector, Δr is

$$
\begin{aligned}
\Delta W & =\stackrel{\rightharpoonup}{F}(x, y, z) \cdot \Delta \stackrel{\rightharpoonup}{r}(x, y, z) \\
W & =\int_{C} \stackrel{\rightharpoonup}{F} \cdot d \vec{r}
\end{aligned}
$$

Formula for calculating work

$$
\begin{aligned}
& \text { If } \begin{array}{r}
\vec{F}=M \hat{i}+N \hat{j}+P \hat{k} \\
\text { where } \begin{array}{r}
M=M(x, y, z) \\
N=N(x, y, z) \\
P=P(x, y, z)
\end{array} \\
\text { then } W=\int_{C} \vec{F} \cdot d \vec{r}=
\end{array} .
\end{aligned}
$$

EX 3 Find the work done by an inverse square law force field
$\stackrel{\rightharpoonup}{F}(x, y, z)=\frac{-c(x \hat{i}+y \hat{j}+z \hat{k})}{\sqrt{x^{2}+y^{2}+z^{2}}}$
in moving a particle along the straight line curve from $(0,3,0)$ to $(4,3,0)$.

Note: If $c>0$, then the work done is negative.

EX 4 Evaluate $\int_{C}(2 x+9 z) d s$, where C is the curve given by

$$
x=t, y=t^{2}, z=t^{3}, \quad t \in[0,1] .
$$

EX 5 Evaluate $\int_{C}\left(y d x+x^{2} d y\right)$, where C is the curve given by

$$
x=2 t, y=t^{2}-1, t \in[0,2] .
$$

