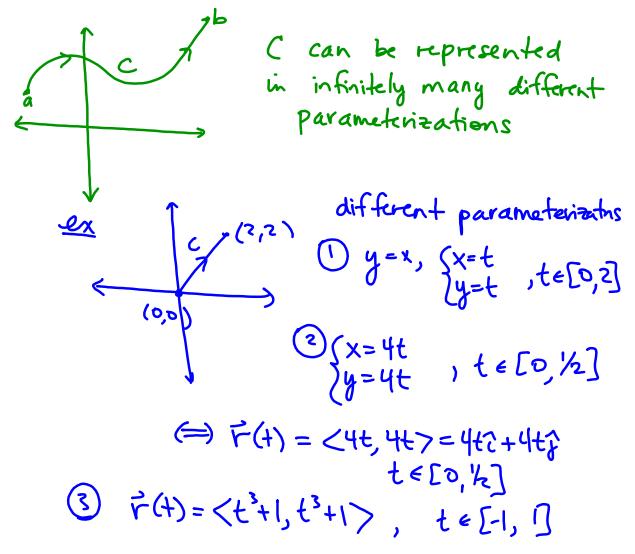


Let's review parameterization of curves.



The length of a parameterized curve in 2-D $(x(t),y(t)), t \in [a,b]$ is given by

$$L = \int_{a}^{b} \sqrt{\left(\frac{dx}{dt}\right)^{2} + \left(\frac{dy}{dt}\right)^{2}} dt$$

In 3-D if $\vec{r}(t) = x(t)\hat{i} + y(t)\hat{j} + z(t)\hat{k}$, (a parameterization
of our curve, C)

then the length of a curve is

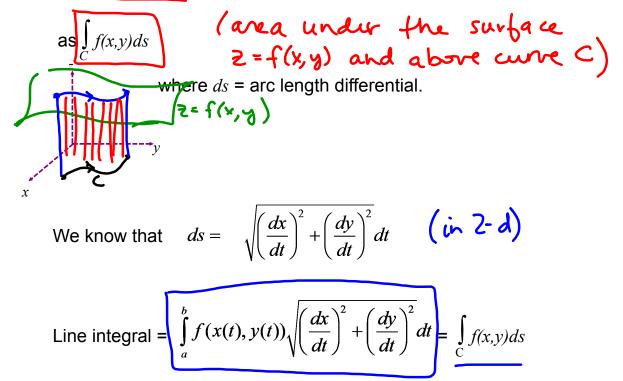
$$L = \int_{a}^{b} \sqrt{\left(\frac{dx}{dt}\right)^{2} + \left(\frac{dy}{dt}\right)^{2} + \left(\frac{dz}{dt}\right)^{2}} dt = \int_{a}^{b} \left\| \vec{r}'(t) \right\| dt$$

 $F'(t) = x'(t)? + y'(t)j + z'(t)\hat{k}$ $\rightarrow ||F'(t)|| = \sqrt{(\frac{dx}{dt})^2 + (\frac{dy}{dt})^2 + (\frac{dz}{dt})^2}$

Suppose f(x,y) is a function whose domain contains the curve (C has this parametrization)

$$C: r(t) = x(t)t + y(t)j, \quad t \in [a,b]. \quad (pf r(t))$$

The line integral of f along the curve C from a to b is defined



In 3 variables

$$\int_{C} f(x,y,z)dx = \int f(x(t),y(t),z(t)) |\overline{y(t)}| dt$$

$$= \int_{0}^{1} f(x(t),y(t),z(t)) \sqrt{\left(\frac{dx}{dt}\right)^{2} + \left(\frac{dy}{dt}\right)^{2} + \left(\frac{dx}{dt}\right)^{2}} dt$$
where $\overline{r(t)} = x(t)\overline{t} + y(t)\overline{t} + z(t)\overline{k}$
EX 1 The figure shows two different paths, $C_{1} \cup C_{2}$ and C_{1} .
Find $\int_{C_{1}}^{C} (x-3y^{2}+z)dx$ and $\int_{C_{1}(x)}^{C} (x-3y^{2}+z)dx$.
 $f(x)\overline{y}\overline{z}$
($\bigcup C_{3} : \overline{r_{3}}(t) = t2 + t2 + t2$, $f(x)\overline{y}\overline{z}$)
 $f(x)\overline{y}\overline{z}$
($\bigcup C_{3} : \overline{r_{3}}(t) = t2 + t2 + t2$, $f(x)\overline{y}\overline{z}$)
 $f(x)\overline{y}\overline{z}$
($\bigcup C_{3} : \overline{r_{3}}(t) = t2 + t3 + t2$, $f(x)\overline{y}\overline{z}$)
 $f(x)\overline{y}\overline{z} + z)dx = \int_{0}^{1} (t-3t^{2}+t)\sqrt{3} dt$ ($\int termenbering$
 $f(x)\overline{y}\overline{z}+z)dx = \int_{0}^{1} (t-3t^{2}+t)\sqrt{3} dt = [1\overline{r}(t)]dt$
 $= (t^{2}-t^{3})\sqrt{3} \int_{0}^{1} = (1-1)\sqrt{3} - 0 = 0$
(2) $(1 : \overline{r_{1}}(t) = t2t + t3)$ $\int_{0}^{1} (z : \overline{r_{2}}(t) = t + f(t))dt$
 $f(x)\overline{y}\overline{z}+z)dx = \int_{0}^{1} (x-3y^{2}+z)dx + \int_{0}^{1} (x-3y^{2}+z)dx$
 $f(x)\overline{y}\overline{z}+z)dx = \int_{0}^{1} (x-3y^{2}+z)dx + \int_{0}^{1} (1-3+t)(1) dt$
 $= (t^{2}-\frac{1}{2}-\frac{3}{2}t^{2}-\frac{1}{2}(\sqrt{2}+3)|_{0}^{1} + (-2t+\frac{4x}{2})|_{0}^{1}$
 $= t\overline{t}\overline{z}-f\overline{z}-0 + (-2+\frac{1}{2})-0$
 $= \frac{1}{2}t\overline{t}^{2}-\frac{3}{2}-\frac{1}{2}(\sqrt{2}+3)|_{0}^{2} dt$
 $eiren though start 4 end pts are the same$
(those are special firs where those integrals
would be regual for all paths
starting at one pt 4 endorg together)

EX 2 A thin wire is bent in the shape of the semicircle

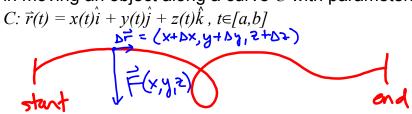
$$\begin{array}{ll} x = a \cos t, & t \in [0,\pi], & a > 0 \\ y = a \sin t & (a \ \text{fixed}) \end{array}$$

If the density of the wire is proportional to the distance from the *x*-axis, find the mass of the wire.

density
$$S(x,y) = ky$$
 (k constant)
= kasint
 $\Delta m = little bit of mass = density x length
of small
=) $dm = S(x,y) ds$
total mass = $\int_{0}^{T} S(x,y) \sqrt{\left(\frac{dx}{dt}\right)^{2} + \left(\frac{dy}{dt}\right)^{2}} dt$
 $dx = -asnt, dy = acost$
 $dx = -asnt, dy = acost$
 $m = \int_{0}^{T} kasint \sqrt{a^{2}sin^{2}t + a^{2}cos^{2}t} dt$
= $ka \int_{0}^{T} a sint dt$
= $ka \int_{0}^{T} a sint dt$$

<u>Work</u>

The goal is to calculate the work done by a vector field $\vec{F(x,y,z)}$ in moving an object along a curve *C* with parameterization.



The work done to move the object at (x,y,z) by a small vector, $\Delta \vec{r}$ is

$$\Delta W = \bar{F}(x, y, z) \cdot \Delta \bar{r}(x, y, z)$$

$$W = \int_{C} \bar{F} \cdot d\bar{r} = \int_{C} \bar{F}(F(F)) \cdot \bar{F}'(F) dF$$

Formula for calculating work

If
$$\vec{F} = M\hat{i} + N\hat{j} + P\hat{k}$$

where $M = M(x,y,z)$
 $N = N(x,y,z)$
 $P = P(x,y,z)$
 $\vec{r}(t) = x(t)\hat{i} + y(t)\hat{j} + z(t)\hat{k}$
 $d\vec{r} = dx \,\hat{i} + dy \,\hat{j} + dz \,\hat{k}$

then
$$W = \int_{C} \bar{F} \cdot d\bar{r} = \int_{C}^{t=b} (\bar{F}(\bar{r}(t)) \cdot \bar{F}'(t)) dt$$

$$= \int_{C}^{t=a} (M(x(t), y(t), \bar{z}(t)) dx$$

$$t=a + N(x(t), y(t), \bar{z}(t)) dy$$

$$+ P(x(t), y(t), \bar{z}(t)) dz$$

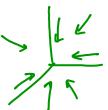
$$= \int_{C}^{t=b} (Max + Ndy + Pdz)$$

$$t=a$$

EX 3 Find the work done by an inverse square law force field

$$\vec{F}(x, y, z) = \frac{-c(xi + yj + zk)}{\sqrt{x^2 + y^2 + z^2}}$$

in moving a particle along the straight line curve from (0,3,0) to (4,3,0).



<u>Note</u>: If c > 0, then the work done is negative.

find A) parameterization for the curve (line) from (0,3,0) to (4,3,0) $f(t) = \langle 4t, 3, 0 \rangle$ $f(t) = \langle 4t, 3, 0 \rangle$ $f'(t) = \langle 4t, 3, 0 \rangle$ $= -c(4t_{1} + 3j_{1} + 0k) = \frac{-c}{11k^{2} + 9} < 4t_{1}, 3, 0 > 0$ $\overset{(c)}{\Rightarrow} W = \int \vec{F} \cdot d\vec{r} = \int \left(\frac{-c}{\sqrt{14c^2 + 1}} < 4t, 3, 0 \right) \cdot < 4, 0, 0 \right) dt$ $= \int_{-\infty}^{1} \frac{-c(16t)}{\sqrt{10(4^{2}+2)}} dt$ $\begin{array}{rcl} u = |6t^{2} + 9 \\ du = 32t \ dt \\ \hline \frac{1}{2} \ du = 16t \ dt \\ f = 0, \ u = |k(0) + 9 \\ = 9 \\ t = 1, \ u = |6 + 9 - 25| \end{array} = \frac{\binom{1}{2} - \binom{1}{2}}{\binom{1}{2}} \ du \\ = \frac{\binom{1}{2} \binom{1}{2}} \ du \\ = \frac{1}{2} \binom{1}{2} \binom{1}{$ =-c(125-19)

-22

EX 4 Evaluate
$$\int_{C} (2x + 9z) ds$$
, where C is the curve given by
 $x = t, y = t^{2}, z = t^{3}, t \in [0, 1]$.
 $\begin{cases} (2x + 9z) ds \\ = \int_{-1}^{1} (2t + 9t^{3}) \sqrt{9t^{4} + 9t^{3} + 1} dt \\ = \sqrt{9t^{4} + 9t^{3} + 9t^{3} + 1} dt \\ = \sqrt{9t^{4} + 9t^{3} + 9t^{3} + 1} dt \\ = \sqrt{9t^{4} +$