

Change of Variables (Jacobian Method)

$$
J(u, v, w)=\left|\begin{array}{lll}
\frac{\partial x}{\partial u} & \frac{\partial x}{\partial v} & \frac{\partial x}{\partial w} \\
\frac{\partial y}{\partial u} & \frac{\partial y}{\partial v} & \frac{\partial y}{\partial w} \\
\frac{\partial z}{\partial u} & \frac{\partial z}{\partial v} & \frac{\partial z}{\partial w}
\end{array}\right|
$$

Transformations from a region G in the $u v$-plane to the region R in the $x y$-plane are done by equations of the form

Ex $1 x=\frac{u+v}{2}, y=\frac{u-v}{2}, G$ is the rectangle given by $\begin{gathered}0 \leq u \leq 1 \\ 0 \leq v \leq 1\end{gathered}$.

How is the integral of $f(x, y)$ over R related to the integral of $f(g(u, v), h(u, v))$ over G ?

$$
\iint_{R} f(x, y) d x d y=\iint_{G} f(g(u, v), h(u, v))|J(u, v)| d u d v
$$

where $\quad J(u, v)=\left|\begin{array}{ll}\frac{\partial x}{\partial u} & \frac{\partial x}{\partial v} \\ \frac{\partial y}{\partial u} & \frac{\partial y}{\partial v}\end{array}\right|=\frac{\partial x}{\partial u} \frac{\partial y}{\partial v}-\frac{\partial y}{\partial u} \frac{\partial x}{\partial v}$

EX 2 For polar coordinates, $x=r \cos \theta, y=r \sin \theta$, what is $J(r, \theta)$?

$$
J(r, \theta)=\left|\begin{array}{ll}
\frac{\partial x}{\partial r} & \frac{\partial x}{\partial \theta} \\
\frac{\partial y}{\partial r} & \partial t
\end{array}\right|
$$

EX 3 Evaluate $\iint_{R} \cos (x-y) \sin (x+y) d A$ where R is the triangle in the $x y$-plane with vertices at $(0,0),(\pi,-\pi)$ and (π, π). Use the change of variables to $u=x-y$ and $v=x+y$.

EX 4 Evaluate $\iint_{R} 5\left(x^{2}+y^{2}\right) d x d y$ where R is the region in Q_{1} bounded by $x^{2}+y^{2}=9, x^{2}+y^{2}=16, y^{2}-x^{2}=1, y^{2}-x^{2}=9$.

Hint: Use $u=x^{2}+y^{2}$ and $v=y^{2}-x^{2}$ to transform R into a much nicer region (G).

Change of variables in 3 dimensions.
If $\quad x=g(u, v, w)$
$y=h(u, v, w)$
$z=j(u, v, w)$
then
$\iiint_{R} f(x, y, z) d x d y d z=\iiint_{G} f(g(u, v, w), h(u, v, w) j(u, v, w))|J(u, v, w)| d u d v d w$
where $J(u, v, w)=$
$\left|\begin{array}{lll}\frac{\partial x}{\partial u} & \frac{\partial x}{\partial v} & \frac{\partial x}{\partial w} \\ \frac{\partial y}{\partial u} & \frac{\partial y}{\partial v} & \frac{\partial y}{\partial w} \\ \frac{\partial z}{\partial u} & \frac{\partial z}{\partial v} & \frac{\partial z}{\partial w}\end{array}\right|$

EX 5 Let's check the Jacobian for spherical coordinates.

$$
\begin{aligned}
& x=\rho \cos \theta \sin \varphi \\
& y=\rho \sin \theta \sin \varphi \\
& z=\rho \cos \varphi
\end{aligned}
$$

$$
J(\rho, \theta, \varphi)=\left|\begin{array}{lll}
\frac{\partial x}{\partial \rho} & \frac{\partial x}{\partial \theta} & \frac{\partial x}{\partial \varphi} \\
\frac{\partial y}{\partial \rho} & \frac{\partial y}{\partial \theta} & \frac{\partial y}{\partial \varphi} \\
\frac{\partial z}{\partial \rho} & \frac{\partial z}{\partial \theta} & \frac{\partial z}{\partial \varphi}
\end{array}\right|
$$

