

Triple Integrals (Cylindrical and Spherical Coordinates)

$$
\iiint_{S} f(x, y, z) d V=\int_{\theta_{1}}^{\theta_{1}} \int_{r_{1}(\theta)}^{r_{2}(\theta)} \int_{g_{1}(r, \theta)}^{g_{2}(r, \theta)} f(r \cos \theta, r \sin \theta, z) r d z d r d \theta
$$

Note: Remember that in polar coordinates $d A=r d r d \theta$

EX 1 Find the volume of the solid bounded above by the sphere $x^{2}+y^{2}+z^{2}=9$, below by the plane $z=0$ and laterally by the cylinder $x^{2}+y^{2}=4$. (Use cylindrical coordinates.)

EX 2 Find $\iiint_{S} f(x, y, z) d V$ for $f(x, y, z)=z^{2} \sqrt{x^{2}+y^{2}}$ and

$$
\mathrm{S}=\left\{(x, y, z) \mid x^{2}+y^{2} \leq 4,-1 \leq z \leq 3\right\} .
$$

Spherical Coordinates

$$
\begin{aligned}
& \iiint_{S} f(x, y, z) d V=\int_{\phi_{1}}^{\phi_{2}} \int_{g_{1}(\phi)}^{g_{2}(\phi)} \int_{\psi_{1}(\theta, s)}^{\left.\psi_{2}(\theta)\right)} f(\rho \sin \phi \cos \theta, \rho \sin \phi \sin \theta, \rho \cos \phi) \rho^{2} \sin \phi d \rho d \theta d \phi \\
&=\iiint_{S} f p^{2} \sin \phi d \rho d \theta d \phi \\
& \text { EX } 3 \text { Find } \iiint_{S} f(x, y, z) d V \text { for } f(x, y, z)=x^{2}+y^{2} \text { on } S=\left\{(x, y, z) \mid x^{2}+y^{2}+z^{2} \leq 1\right\} .
\end{aligned}
$$

EX 4 Find the volume of the solid inside the sphere
$x^{2}+y^{2}+z^{2}=16$, outside the cone, $z=\sqrt{x^{2}+y^{2}}$, and above the $x y$-plane.

