

Triple Integrals

$$
\begin{aligned}
\iiint_{B} 8 x y z d V & =\int_{1}^{2} \int_{2}^{3} \int_{0}^{1} 8 x y z d z d x d y \\
& =\left.\int_{1}^{2} \int_{2}^{3} 4 x y z^{2}\right|_{0} d x d y \\
& =\int_{1}^{2} \int_{2}^{3} 4 x y d x d y \\
& =\left.\int_{1}^{2} 2 x^{2} y\right|_{2} ^{3} d y \\
& =\int_{1}^{2} 10 y d y=15
\end{aligned}
$$

Triple Integrals

$$
\begin{array}{ll}
A=\int_{a}^{b} f(x) d x & \begin{array}{l}
\text { Measures 2-D space (signed area) under a curve } \\
\text { above the } x \text {-axis. }
\end{array} \\
V=\iint_{S} f(x, y) d A & \begin{array}{l}
\text { Measures 3-D space (signed volume) under a } \\
\text { surface above the } x y \text {-plane. }
\end{array}
\end{array}
$$

We predict that $\iiint f(x, y, z) d V$ measures 4-D space (signed) under a "hyper" surface "above" the $x y z$-"hyper-plane".
(ex thanh of $T=f(x, y, z)$ as temperature fin on S)
$\iiint_{S} f(x, y, z) d V=\int_{a_{1}}^{a_{2}} \int_{\varphi_{1}(x)}^{\varphi_{2}(x)} \int_{\psi_{1}(x, y)}^{\psi_{2}(x, y)} f(x, y, z) d z d y d x$ (S is $\left.\mathcal{F} d\right)$
$\psi_{1}(x, y) \leq z \leq \psi_{2}(x, y), \quad \varphi_{1}(x) \leq y \leq \varphi_{2}(x), \quad a_{1} \leq x \leq a_{2}$
Note: We cant draw anything in 4-D, but we can draw the region S in 3-D (domain space is now 3-D).

EX 1 Write an iterated integral for $\iiint_{S}(y+z+l) d V$

$$
d V=d x d y d z
$$

where $S=\{(x, y, z) \mid x \in[0,1], y \in[2,5], z \in[1,4]\}$.
(or $d V=d y d x d z$

$$
\begin{aligned}
& \iint_{5}(y+z+1) d x d y d z \\
& =\int_{1}^{4} \int_{2}^{5} \int_{0}^{1}(y+z+1) d x d y d z \\
& =\left.\int_{1}^{4} \int_{2}^{5}(y+z+1) x\right|_{0} ^{1} d y d z \\
& =\int_{1}^{4} \int_{2}^{5}(y+z+1) d y d z \\
& =\left.\int_{1}^{4}\left(\frac{1}{2} y^{2}+(z+1) y\right)\right|_{2} ^{5} d z \\
& =\int_{1}^{4}\left(\frac{25}{2}+5 z+5-2-2 z-2\right) d z \\
& =\int_{1}^{4}\left(\frac{27}{2}+3 z\right) d z=\left(\frac{27}{2} z+\frac{3}{2} z^{2}\right) 14
\end{aligned}
$$

EX 2 Evaluate $\int_{0}^{\pi / 2} \int_{0}^{z} \int_{0}^{y} \sin (x+y+z) d x d y d z$.

$$
\begin{aligned}
0 & \leq x \leq y \\
0 & \leq y \leq z \\
0 & \leq z \leq \pi / 2 \\
y & =\int_{0}^{\pi / 2} \int_{0}^{z}-\left.\cos (x+y+z)\right|_{0} ^{y} d y d z \\
& =\int_{0}^{\pi / 2} \int_{0}^{z}(-\cos (2 y+z)+\cos (y+z)) d y d z \\
& =\left.\int_{0}^{\pi / 2}\left(-\frac{\sin (2 y+z)}{2}+\sin (y+z)\right)\right|_{0} ^{z} d z \\
& =\int_{0}^{\pi / 2}\left[\left(-\frac{1}{2} \sin (3 z)+\sin (2 z)\right)-\left(-\frac{1}{2} \sin (z)+\sin (z)\right)\right] d z \\
& =\int_{0}^{\pi / 2}\left(-\frac{1}{2} \sin (3 z)+\sin (2 z)-\frac{1}{2} \sin z\right] d z \\
& =\left.\left(\frac{1}{6} \cos (3 z)-\frac{1}{2} \cos (2 z)+\frac{1}{2} \cos z\right)\right|_{0} ^{\pi / 2} \\
& =\left(\frac{1}{6} \cos \left(\frac{3 \pi}{2}\right)-\frac{1}{2} \cos (\pi)+\frac{1}{2} \cos \left(\frac{\pi}{2}\right)\right) \\
& -\left(\frac{1}{6}-\frac{1}{2}+\frac{1}{2}\right)=-\frac{1}{2}(-1)-\frac{1}{6}=\frac{1}{3}
\end{aligned}
$$

EX 3 Write an iterated integral for $\iiint_{S} f(x, y, z) d V$ where S is the region in the first octant bounded by the surface $z=9-x^{2}-y^{2}$ and the coordinate planes.

$$
\begin{array}{ll|l}
\text { S: } z=9-x^{2}-y^{2},\left.\right|^{s t} \text { oct } & d V=d z d y d x \\
0 \leq z \leq 9-x^{2}-y^{2}
\end{array} \quad \begin{aligned}
& \text { (qto of paraboloid) } \\
& 0 \leq y \leq \sqrt{9-x^{2}} \\
& \iint_{S}^{\frac{1}{3}} f(x, y, z) d V=\int_{0}^{3} \int_{0}^{\sqrt{9-x^{2}}} \int_{0}^{9-x^{2}-y^{2}} f(x y, z) d z d y d x
\end{aligned}
$$

EX 4 Find the volume of the solid in the first octant bounded by the hyperbolic cylinder $y^{2}-64 z^{2}=4$ and the planes $y=x$ and $y=4$.

Note: $z=f(x, y)$

$$
\begin{array}{rlr}
V & =\iint_{R} f(x, y) d A & \begin{array}{r}
R_{\text {region }} \\
\text { in } z d
\end{array} \\
& =\iiint_{S} 1 d V & \begin{array}{r}
\text { domain } \\
\text { Space }
\end{array}
\end{array}
$$

(S is 3-d region; solid)
ex $V=\iint_{R} f(x, y) d x d y=\iiint_{R}\left[\int_{0}^{f(x, y)} 1 d z\right] d x d y$

$$
V=\iiint_{s} d V=\iiint_{S} d x d z d y
$$

$$
\begin{aligned}
& 0 \leq x \leq y \\
& \begin{array}{c}
0 \leq x \leq y \\
0 \leq z \leq \frac{1}{8} \sqrt{y^{2}-4}
\end{array} \\
& 2 \leq y \leq 4 \\
& V=\int_{2}^{4} \int_{0}^{\frac{1}{8} \sqrt{y^{2}-4}} \int_{0}^{y} d x d z d y \\
& =\int_{2}^{4} \int_{0}^{\frac{1}{8} \sqrt{y^{2}-4}} y d z d y \\
& =\int_{2}^{4} \frac{1}{8} y \sqrt{y^{2}-4} d y \\
& u=y^{2}-4 \quad=\int_{0}^{12} \frac{1}{8}\left(\frac{1}{2}\right) \sqrt{u} d u \\
& \begin{array}{l}
d u=2 y d y \\
\frac{1}{2} d u=y d y
\end{array}=\left.\frac{1}{16}\left(\frac{2}{3} u^{3 / 2}\right)\right|_{0} ^{12} \\
& \frac{1}{2} d u=y d y \\
& y=2, u=2^{2}-4=0 \\
& =\frac{1}{24}\left(12^{3 / 2}-0\right)=\frac{1}{24}(2 \sqrt{3})^{3} \\
& y=4, u=4^{2}-4=12 \\
& y^{2}-64 z^{2}=4 \\
& y=4 \\
& y^{2}-4=64 z^{2} \\
& z=\frac{1}{8} \sqrt{y^{2}-4}
\end{aligned}
$$

EX 5 Find the volume of the tetrahedron with vertices at $(0,0,0),(0,0,3)$, $(0,4,0)$, and $(2,0,0)$.
plane ("roof")

$$
\begin{aligned}
& a x+b y+c z=d \\
& 3 c=d, \quad 4 b=d, \quad 2 a=d
\end{aligned}
$$

choose $d=12, c=4, b=3, a=6$

$$
\Rightarrow 6 x+3 y+4 z=12
$$

$$
\begin{aligned}
& V=\iiint_{S} d V=\iiint_{S} d z d y d x \\
& =\int_{0}^{2} \int_{0}^{4-2 x} \int_{0}^{3-\frac{3}{4} y-\frac{3}{2} x} d z d y d x \\
& 0 \leq y \leq 4-2 x \\
& 0 \leq x \leq 2 \\
& =\int_{0}^{2} \int_{0}^{4-2 x}\left(3-\frac{3}{4} y-\frac{3}{2} x\right) d y d x \\
& =\left.\int_{0}^{2}\left(3 y-\frac{3}{8} y^{2}-\frac{3}{2} x y\right)\right|_{0} ^{4-2 x} d x \\
& =\int_{0}^{2}\left(3(4-2 x)-\frac{3}{8}(4-2 x)^{2}-\frac{3}{2} x(4-2 x)\right) d x \\
& =\int_{0}^{2}\left(12-6 x-\frac{3}{8}\left(16-16 x+4 x^{2}\right)-6 x+3 x^{2}\right) d x \\
& =\int_{0}^{2}\left(6-6 x+\frac{3}{2} x^{2}\right) d x \\
& \left.=\left.\left(6 x-3 x^{2}+\frac{1}{2} x^{3}\right)\right|_{0} ^{2}=(y-3 \not x 4)+\frac{1}{2}(8)\right)-0 \\
& =4 \text { units }^{3}
\end{aligned}
$$

