

To find the surface area, we are going to add up lots of little areas of parallelograms that are tangent to the surface.

In the limit as Δx and Δy go to zero, the sum becomes an integral which gives the true surface area.

EX 1 Find the surface area of the plane
$$3x - 2y + 6z = 12$$
 that is bounded
by the planes, $x = 0, y = 0$, and $3x + 2y = 12$.

 $G \ge = 12 - 3 \times + 2y$
 $z = f(x,y) = 2 - \frac{1}{2} \times + \frac{1}{3}y$
 $SA = \iint_{S} \sqrt{\int_{X}^{x} + \int_{Y}^{x} + 1} dA$
 $= \iint_{S} \sqrt{\int_{X}^{x} + \int_{Y}^{x} + 1} dA$
 $= \iint_{S} \sqrt{\int_{Y}^{x} + \int_{Y}^{x} + 1} dA$
 $= \int_{S} \sqrt{\int_{Y}^{x} + \int_{Y}^{x} + 1} dA$
 $= \int_{S} \sqrt{\int_{Y}^{x} + \int_{Y}^{x} +$

Note: remember from Calc I. length of cure $L = \int_{a}^{b} \sqrt{\left(\frac{df}{dx}\right)^{2} + 1} dx$

For a surface area defined parametrically,

$$\vec{r}(u,v) = \langle f(u,v), g(u,v), h(u,v) \rangle.$$

$$SA = \int \int ||\vec{r}_{u} \times \vec{r}_{v}|| dA$$

$$R = \int \int ||\vec{r}_{u} \times \vec{r}_{v}|| dA$$

$$R = \int \int ||\vec{r}_{u} \times \vec{r}_{v}|| dA$$

$$R = \int ||\vec{r}_{u} \cdot \vec{r}_{v$$