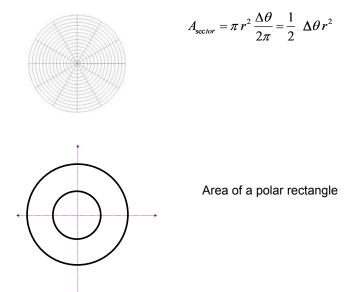


Double Integrals in Polar Coordinates

Rather than finding the volume over a rectangle (for Cartesian Coordinates), we will use a "polar rectangle" for polar coordinates.



Why do we want to integrate polar coordinates?

EX 1 Find the area of the given region *S* by calculating $A = \iint_{S} dA = \iint_{S} r \, dr \, d\theta \, .$

a) *S* is the smaller region bounded by $\theta = \pi/6$ and $r = 4\sin\theta$.

EX 1 (cont'd) Find the area of the given region *S* by calculating

$$\iint_{S} r \, dr \, d\theta \; .$$

b) *S* is the region outside the circle r = 2 and inside the lemniscate $r^2 = 9\cos(2\theta)$.

EX 2 Evaluate using polar coordinates.

a)
$$\iint_{S} y \, dA$$
 where S is the first quadrant polar rectangle inside $x^2 + y^2 = 4$ and outside $x^2 + y^2 = 1$.

b)
$$\iint\limits_{s} (x^2 + y^2) dA$$

EX 2 (cont'd) Evaluate using polar coordinates.

c)
$$\int_0^1 \int_0^{\sqrt{1-y^2}} \sin(x^2 + y^2) \, dx \, dy$$