

Rather than finding the volume over a rectangle (for Cartesian Coordinates), we will use a "polar rectangle" for polar coordinates.
 $d A=$ ?

$$
A_{\text {sector }}=\pi r^{2}\left(\frac{\Delta \theta}{2 \pi}\right)=\frac{1}{2} \Delta \theta r^{2}
$$

$\Delta \theta=$ "a little bit of $\theta$ "

$$
\begin{gathered}
A_{\text {sector }}=A_{\text {arable }}\left(\begin{array}{l}
\text { fraction of } \\
\text { circle that I }
\end{array}=\pi r^{2}\left(\frac{\Delta \theta}{2 \pi}\right)\right. \\
\text { want to keep })
\end{gathered}
$$



Area of a polar rectangle
$r_{0}=$ outer radius, $r_{i}=$ inner radius

$$
A_{p r}=A_{\text {other }}-A_{\text {inner }}
$$

$$
=\frac{1}{2} \Delta \theta\left(r_{0}^{2}\right)-\frac{1}{2} \Delta \theta\left(r_{i}^{2}\right)
$$

$$
=\frac{1}{2} \Delta \theta\left(r_{0}^{2}-r_{i}^{2}\right)=\frac{1}{2} \Delta \theta\left(r_{0}+r_{i}\right)\left(r_{0}-r_{i}\right)
$$

$$
\begin{aligned}
& A_{p r}=\Delta \theta(\underbrace{\left(r_{0}-v_{1}\right)}_{\Delta r}(\underbrace{\frac{r_{0}+r_{i}}{2}}_{\bar{r}})=\Delta \theta \Delta r \bar{r}=\underbrace{\bar{r} \Delta r \Delta \theta} \\
& \Rightarrow d A=r d r d \theta \quad \mid \text { remember }
\end{aligned}
$$

Then

$$
\begin{aligned}
& V=\iint_{S} f(r, \theta) d A \\
&=\int_{S} \int_{S} f(r, \theta) r d r d \theta \\
& \text { or } \int_{S} \int_{S} f(r, \theta) r d \theta d r
\end{aligned}
$$

Why do we want to integrate polar coordinates?
because some integrals are doablefeasier in polar coords.
EX 1 Find the area of the given region $S$ by calculating

$$
A=\iint_{S} d A=\iint_{S} r d r d \theta
$$

a) $S$ is the smaller region bounded by $\theta=\pi / 6$ and $r=4 \sin \theta$.


$$
\begin{aligned}
& 0 \leq r \leq 4 \sin \theta \\
& 0 \leq \theta \leq \pi / 6
\end{aligned}
$$

$$
A=\int_{0}^{\pi / 6} \int_{0}^{45 n} r d r d \theta
$$

$$
\begin{aligned}
A & =\left.\int_{0}^{\pi / 6}\left(\frac{r^{2}}{2}\right)\right|_{0} ^{4 \sin \theta} d \theta \\
& =\int_{0}^{\pi / 6} \frac{1}{2}\left(16 \sin ^{2} \theta\right) d \theta=8 \int_{0}^{\pi / 6} \sin ^{2} \theta d \theta \\
& =\frac{8}{2} \int_{0}^{\pi / 6}(1-\cos (2 \theta)) d \theta \\
& =\left.4\left(\theta-\frac{1}{2} \sin (2 \theta)\right)\right|_{0} ^{\pi / 6} \\
& =4\left(\frac{\pi}{6}-\frac{1}{2} \sin \left(\frac{\pi}{3}\right)\right)-4(0-0)=\frac{2 \pi}{3}-2\left(\frac{\sqrt{3}}{2}\right) \\
& =\frac{2 \pi}{3}-\sqrt{3}
\end{aligned}
$$

EX 1 (contd) Find the area of the given region $S$ by calculating

$$
\iint_{S} r d r d \theta
$$

b) $S$ is the region outside the circle $r=2$ and inside the lemniscate $r^{2}=9 \cos (2 \theta)$.

$$
A=4 A_{\text {blue }}
$$


intersect n pt:
$r=2 \quad r^{2}=9 \cos (2 \theta)$

$2 \theta=\arccos \left(\frac{4}{9}\right)$
$\theta=\frac{1}{2} \cos ^{-1}\left(\frac{4}{9}\right)$
$=\frac{9}{2} \int_{0}^{\frac{1}{2} \arccos \left(\frac{4}{9}\right)} \cos (2 \theta) d \theta-\left.2 \theta\right|_{0} ^{\frac{1}{2} \arccos \left(\frac{4}{9}\right)}$

$$
=\left.\frac{9}{2}\left(\frac{1}{2}\right) \sin (2 \theta)\right|_{0} ^{\frac{1}{2} \arccos \left(\frac{4}{9}\right)}-\arccos \left(\frac{4}{9}\right)
$$

aside:
$\sin \left(2\left(\frac{1}{2} \arccos \left(\frac{4}{9}\right)\right)\right.$
$=\sin \left(\arccos \left(\frac{4}{9}\right)\right)$


$$
\begin{aligned}
& =\frac{9}{4}\left(\frac{\sqrt{65}}{9}\right)-\arccos \left(\frac{4}{9}\right) \\
& =\frac{\sqrt{65}}{4}-\arccos \left(\frac{4}{9}\right)
\end{aligned}
$$

$$
A=4 A_{\text {bun }}=4\left(\frac{\sqrt{65}}{4}-\arccos \left(\frac{4}{9}\right)\right)
$$

$$
=\sqrt{65}-4 \arccos \left(\frac{4}{9}\right)
$$

EX 2 Evaluate using polar coordinates.
a) $\iint_{S} y d A \quad$ where $S$ is the first quadrant polar rectangle inside $x^{2}+y^{2}=4$ and outside $x^{2}+y^{2}=1$.



$$
\left.\left.\begin{array}{l}
1 \leq r \leq 2 \\
0 \leq \theta \leq \pi / 2
\end{array} \right\rvert\,=\int_{5} y d A=\int_{0}^{\pi / 2} \int_{0}^{\pi / 2}(r \sin \theta) \int_{1}^{2} \int_{1}^{2} \sigma^{2} d r d r d \theta\right]
$$

$$
=\frac{7}{3}\left(-\left.\cos \theta\right|_{0} ^{\pi / 2}\right)=-\frac{7}{3}\left(\cos \frac{\pi}{2}-\cos 0\right)
$$

b) $\iint_{S}\left(x^{2}+y^{2}\right) d A$

$$
=-\frac{7}{3}(0-1)=\frac{7}{3}
$$

$$
\begin{aligned}
& \int_{0}^{\pi / 2} \int_{1}^{2}\left(r^{2}\right) r d r d \theta \\
& =\int_{0}^{\pi / 2}\left(\int_{1}^{2} r^{3} d r\right) d \theta=\int_{0}^{\pi / 2}\left(\left.\frac{r^{4}}{4}\right|_{1} ^{2}\right) d \theta \\
& \\
& =\left(\frac{2^{4}}{4}-\frac{1^{4}}{4}\right)\left(\left.\theta\right|_{0} ^{\pi / 2}\right) \\
& \\
& =\frac{15}{4}\left(\frac{\pi}{2}\right)=\frac{15 \pi}{8}
\end{aligned}
$$

EX 2 (cont'd) Evaluate using polar coordinates.
c) $\int_{0}^{1} \int_{0}^{\sqrt{1-y^{2}}} \sin \left(x^{2}+y^{2}\right) d x d y$

$$
0 \leq x \leq \sqrt{1-y^{2}}
$$

$$
0 \leq y \leq 1
$$

$$
\begin{aligned}
& =\int_{0}^{\pi / 2} \int_{0}^{1} \sin \left(r^{2}\right) r d r d \theta \\
& \begin{array}{l}
u=r^{2} \\
d u=2 \leq \theta \leq \pi / 2 \\
\frac{1}{2} d u=r d r \\
\begin{array}{l}
r=0, u=0 \\
r=1, u=1^{2}=1
\end{array} \\
=
\end{array}=\frac{1}{2} \int_{0}^{\pi / 2} \int_{0}^{\pi / 2} \sin u d u d \theta \\
& = \\
& \\
& =
\end{aligned}
$$

