

Double Integrals Over

Non-rectangular Regions

Double Integrals over Non-rectangular Regions
What if the region were integrating over is not a rectangle, but a simple, closed curve region instead?
 integration can be dependent are constants on y

EX 1 Find $\iint_{S} 5 d A$ where S is the triangle with vertices at $(0,0),(0,4)$, and (1,4).

$$
\begin{aligned}
& V=\iint_{5} 5 d x d y \\
& =\int_{0}^{4}\left[\int_{0}^{\frac{1}{4} y} 5 d x\right] d y \\
& =\int_{0}^{4}\left(\left.5 x\right|_{0} ^{\frac{1}{4} y}\right) d y \\
& =\int_{0}^{4} 5\left(\frac{1}{4} y-0\right) d y \\
& =\frac{5}{4} \int_{0}^{4} y d y \\
& =\frac{5}{4}\left(\left.\frac{y^{2}}{2}\right|_{0} ^{4}\right) \\
& =\frac{5}{8}\left(4^{2}-0\right)=5(2)=10
\end{aligned}
$$

EX 2 Evaluate $\iint_{S} x d A$ where S is the region between $y=x$ and $y=x^{2}$ in the first octant.

$$
V=\int_{0}^{1} \int_{x^{2}}^{x} x d y d x
$$

$$
V=\int_{0}^{1} x\left(\left.y\right|_{x^{2}} ^{x}\right) d x
$$

$$
x^{2} \leq y \leq x
$$

$$
0 \leq x \leq 1
$$

$$
=\int_{0}^{1} x\left(x-x^{2}\right) d x=\int_{0}^{1}\left(x^{2}-x^{3}\right) d x
$$

$$
=\left.\left(\frac{x^{3}}{3}-\frac{x^{4}}{4}\right)\right|_{0} ^{1}=\frac{1}{3}-\frac{1}{4}=\frac{1}{12}
$$

note:

Area $=\int_{0}^{1}\left(x-x^{2}\right) d x$

$$
A=\int_{0}^{1} \int_{x^{2}}^{x} d y d x
$$

$$
\begin{aligned}
& \text { Area }=\int_{0}^{1}(\sqrt{y}-y) d y \\
& A=\int_{0}^{1} \int_{0}^{\sqrt{y}} d x d y
\end{aligned}
$$

$$
\int_{x^{2}}^{x} d y=\left.y\right|_{x^{2}} ^{x}=x-x^{2}
$$

EX 3 Write these integrals as iterated integrals with the order of integration switched.
a) $\int_{0}^{2} \int_{y^{2}}^{2 y} f(x, y) d x d y=\int_{0}^{4} \int_{\frac{1}{2} x}^{\sqrt{x}} f(x, y) d y d x$

(1) $y^{2} \leq x \leq 2 y$
(1) $\frac{1}{2} x \leq y \leq \sqrt{x}$
(2) $0 \leq y \leq 2$
(2) $0 \leq x \leq 4$
b) $\int_{1 / 2}^{1} \int_{x^{3}}^{x} f(x, y) d y d x=\int_{\frac{1}{2}}^{1} \int_{y}^{\sqrt[3]{y}} f(x, y) d x d y+\int_{\frac{1}{8}}^{\frac{1}{2}} \int_{\frac{1}{2}}^{\sqrt[3]{y}} f(x, y) d x d y$

(1) $x^{3} \leq y \leq x$
$\{$ (1) $y \leq x \leq \sqrt[3]{y}$
(2) $1 / 2 \leq x \leq 1$ (1,1)(2) $\frac{1}{2} \leq y \leq 1$

c) $\int_{0}^{1} \int_{-y}^{y} f(x, y) d x d y=\int_{-1}^{0} \int_{-x}^{1} f(x, y) d y d x+\int_{0}^{1} \int_{x}^{1} f(x, y) d y d x$

(2) $0 \leq y \leq 1$

$$
\left\{\begin{array} { l }
{ (1) - x \leq y \leq 1 } \\
{ \text { (2) } - 1 \leq x \leq 0 }
\end{array} \quad B \left\{\begin{array}{l}
0 x \leq y \leq 1 \\
(2) 0 \leq x \leq 1
\end{array}\right.\right.
$$

a) $\int_{1}^{5} \int_{0}^{x} \frac{3}{x^{2}+y^{2}} d y d x$

$$
=\left.\int_{1}^{5}\left(\frac{3}{x} \arctan \left(\frac{y}{x}\right)\right)\right|_{0} ^{x} d x
$$

$$
=\int_{1}^{5}\left(\frac{3}{x}\left[\arctan \left(\frac{x}{x}\right)-\arctan 0\right]\right) d x=\int_{1}^{5} \frac{3 \pi}{4}\left(\frac{1}{x}\right) d x
$$

b) $\int_{\pi / 6}^{\pi / 2} \int_{0}^{\sin \theta} 6 r \cos \theta d r d \theta$

$$
=\left.\frac{3 \pi}{4}(\ln |x|)\right|_{1} ^{5}=\frac{3 \pi}{4} \ln 5
$$

$$
\begin{aligned}
& =\left.\int_{\pi / 6}^{\pi / 2} 6 \cos \theta\left(\frac{r^{2}}{2}\right)\right|_{0} ^{\sin \theta} d \theta \\
& =\int_{\pi / 6}^{\pi / 2} 3 \cos \theta\left(\sin ^{2} \theta\right) d \theta \\
& u=\sin \theta \\
& d u=\cos \theta d \theta \\
& \theta=\pi / 6, u=\sin (\pi / 4)=\frac{1}{2} \\
& \theta=\pi / 2, \quad u=\sin (\pi / 2)=1
\end{aligned}
$$

EX 5 Find the volume of the solid bounded by the parabolic cylinder $x^{2}=4 y$ and the planes $z=0$ and $5 y+9 z-45=0$.

$V=\int_{-6}^{6} \int_{\frac{1}{4} x^{2}}^{9}$ top surface' $11 y d x$

$=\left.\int_{-6}^{6}\left(5 y-\frac{5}{18} y^{2}\right)\right|_{\frac{1}{4} x^{2}} ^{9} d x$
$=\int_{-6}^{6}\left[\left(45-\frac{45}{2}\right)-\left(\frac{5}{4} x^{2}-\frac{5}{18}\left(\frac{1}{16} x^{4}\right)\right)\right] d x$
$=\int_{-6}^{6}\left(\frac{45}{2}-\frac{5}{4} x^{2}+\frac{5}{18(16)} x^{4}\right) d x$
$=\left.\left(\frac{45}{2} x-\frac{5}{4}\left(\frac{x^{3}}{3}\right)+\frac{8}{18(16)}\left(\frac{x^{5}}{8}\right)\right)\right|_{-6} ^{6}$
$=\frac{45}{2}(6--6)-\frac{5}{12}\left(6^{3}-(-6)^{3}\right)+\frac{6^{5}-(-6)^{5}}{18(16)}$
$=45(6)-5(36)+\frac{6^{4}}{24}$
$=270-180+54$
$=144$

