

Parametric Representations

 ofPlane Curves

A plane curve is a 2-dimensional curve given by

$$
x=f(t) \quad y=g(t) \quad t \in I
$$

where f and g are continuous functions on the interval $I,[a, b]$. t is the parameter. $\quad t \in[a, b]$

($x(a), y(a))$
initial endpoint

closed
curve
not simple,

closed
curve

not simple, not closed
curve

It can be hard to recognize the shape of a curve when given parametically. Sometimes it is possible to eliminate the parameter.

EX 1 Eliminate the parameter and sketch this curve.

$$
x=t-3 \quad y=\sqrt{t} \quad 0 \leq t \leq 8
$$

EX 2 Eliminate the parameter t, graph the curve and tell if it is simple and closed.

$$
x=\sqrt{t-3} \quad y=\sqrt{4-t} \quad 3 \leq t \leq 4
$$

EX 3 Eliminate the parameter θ, graph the curve and tell if it is
simple and closed.

$$
x=\sin \theta \quad y=2 \cos ^{2}(2 \theta) \quad \theta \in \mathfrak{R}
$$

Theorem A

Let f and g be continuously differentiable with $f^{\prime}(t) \neq 0$ on $t \in(\alpha, \beta)$.
Then the parametric equations $\quad x=f(t) \quad$ and $\quad y=g(t)$
define y as a differentiable function of x and

$$
\frac{d y}{d x}=\frac{d y / d t}{d x / d t} \quad \frac{d^{2} y}{d x^{2}}=\frac{d y^{\prime} / d t}{d x / d t} \quad \text { where } y^{\prime}=\frac{d y}{d x}
$$

EX 4 Find $\frac{d y}{d x}$ and $\frac{d^{2} y}{d x^{2}} \quad$ (without eliminating the parameter.)
a) $x=\sqrt{3} \theta^{2} \quad y=-\sqrt{3} \theta^{3} \quad \theta \neq 0$
b) $x=\frac{2}{1+t^{2}} \quad y=\frac{2}{t\left(1+t^{2}\right)} \quad t \neq 0$

$$
\text { Length of a curve: } \quad L=\int_{a}^{b} \sqrt{\left(\frac{d x}{d t}\right)^{2}+\left(\frac{d y}{d t}\right)^{2}} d t
$$

EX 5 Find the length of the curve given by

$$
\begin{aligned}
& x=\sin \theta-\theta \cos \theta \quad \theta \in[\pi / 4, \pi / 2] \\
& y=\cos \theta+\theta \sin \theta
\end{aligned}
$$

