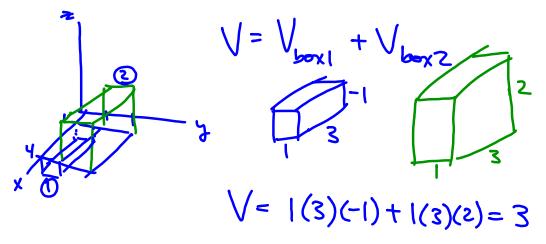
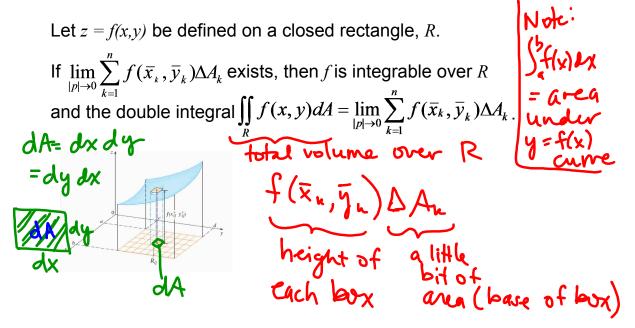


EX 1 If
$$f(x, y) = \begin{cases} -1 & 1 \le x \le 4, & 0 \le y < 1 \\ 2 & 1 \le x \le 4, & 1 \le y \le 2 \end{cases}$$

find the signed volume between the z = f(x,y) surface and the xy-plane.

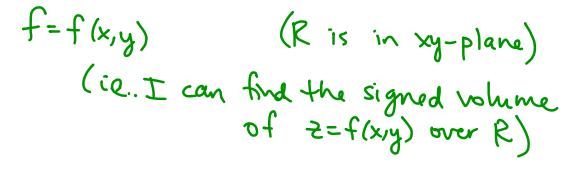


Definition (Double Integral)



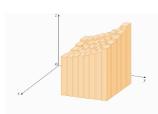
Integrability Theorem

If f is continuous on the closed rectangle R, then f is integrable on R.

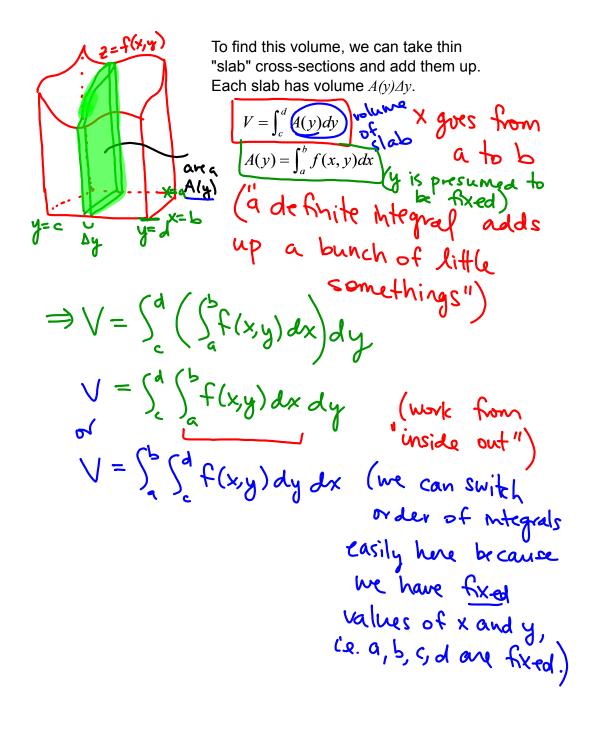


EX 2 Let $R = \{(x, y) | 0 \le x \le 6, 0 \le y \le 4\}$ and $f(x, y) = 16 - y^2$. Partition *R* into 6 equal squares by lines x = 2, x = 4 and y = 2. Approximate $\iint f(x, y) dA$ as $\sum_{k=1}^{\infty} f(\overline{x}_{k}, \overline{y}_{k}) \Delta A_{k}$ where (\bar{x}_k, \bar{y}_k) are centers of squares. z=16-y² (cylnder along x axis) pares / V≈ volume of 6 rect. boxes base of each box [2 =) A base=4 ht of each box: (1) center: (1,3) ht of box over square (D=f(1,3) Canter: (3,3) ht of box = f(3,3) $\bigvee \approx f(1,3)(4) + f(3,3)(4) + f(5,3)(4)$ box () vol hox (?) box (?) + f(1,1)(4) + f(3,1)(4) + f(5,1)(4)xod (I) xod $4\left[\left(16-3^{2}\right)+\left(16-3^{2}\right) & z=16-y^{2} \\ +\left(16-3^{2}\right)+\left(16-1^{2}\right)+\left(16-1^{2}\right)+\left(16-1^{2}\right) \\ = 4\left(21+45\right) = 4(66) = 264 \\ \text{units}^{3}$ $\forall \approx 4 | (16-3^2) + (16-3^2)$

Iterated Integrals



The total volume is the sum of many rectangular boxes and then we take the limit as the number of boxes goes to infinity to get the exact volume.



D)
$$\iint_{R} k dA = k \iint_{R} dA = k A(R)$$
 (k constant)
 $2 = k$

EX 3 Calculate
$$\iint_{R} f(x, y) dA$$
 where $f(x, y) = 7 - y$ plane
 $R = \{(x, y) | 0 \le x \le 2, 0 \le y \le 1\}$.
Hint: Sketch it and see if you recognize it.
Solid: trapezoidal prism
 $V = \iint_{R} f(x, y) dA = \int_{0}^{1} \int_{0}^{2} (7 - y) dx dy$
 $= \int_{0}^{1} (7 - y) (\int_{0}^{2} dx) dy$
 $= \int_{0}^{1} (7 - y) (x |_{0}^{2}) dy$
 $= \int_{0}^{1} (7 - y) (x |_{0}^{2}) dy$
 $= 2 (7y - y^{2}) \Big|_{0}^{1}$
 $= 2[(7 - \frac{1}{2}) - 0] = [13] units^{7}$

Let's practice computing some double integrals.

EX 4 Evaluate
$$\int_{0}^{4} \left[\int_{-1}^{2} (x^{2} - 3y) dx \right] dy$$

$$= \int_{0}^{4} \left(\left(\frac{x}{3} - 3yx \right) \right)_{1}^{2} dy$$

$$= \int_{0}^{4} \left(\left(\frac{x}{3} - 3y(2) \right) - \left(\frac{-1}{3} - 3y(1) \right) \right) dy$$

$$= \int_{0}^{4} \left(3 - 9y \right) dy = \left(3y - 9y^{2} \right) \Big|_{0}^{4} = 12 - 9(8) - 0$$

$$= -60$$
EX 5 $\int_{0}^{1} \int_{0}^{1} \frac{y}{(xy+1)^{2}} dx dy$

$$= \int_{0}^{1} \frac{y}{(xy+1)^{2}} dx dy$$

$$= \int_{0}^{1} \frac{y}{(xy+1)^{2}} dx dy$$

$$= \int_{0}^{1} \frac{y}{(x+1)^{2}} \left(\int_{1}^{3+1} \frac{1}{(x+1)^{2}} dx \right) dy$$

$$= \int_{0}^{1} \frac{y}{(x+1)^{2}} \left(\int_{1}^{3+1} \frac{1}{(x+1)^{2}} dy \right) dy$$

$$= \int_{0}^{1} \left(\frac{(x+1)^{2}}{(x+1)^{2}} \right) dy$$

EX 6
$$\iint_{n} y\sqrt{1+x^{2}} dA \qquad R = \{(x,y) | 0 \le x \le \sqrt{3}, 1 \le y \le 2\}$$

$$= \int_{0}^{\sqrt{3}} \int_{1}^{2} xy\sqrt{1+x^{2}} dy dx \qquad \left| = \left(\int_{1}^{\sqrt{3}} x\sqrt{1+x^{2}} dx\right)^{2} dy dx \\ = \int_{0}^{\sqrt{3}} x\sqrt{1+x^{2}} \left(\int_{1}^{2} y dy dx\right) dx \qquad \left| \left(\int_{1}^{2} y dy\right)^{2} dx \right|$$

$$= \int_{0}^{\sqrt{3}} x\sqrt{1+x^{2}} \left(\frac{y^{2}}{2}\right)^{2} dx \qquad \left| \left(\int_{1}^{2} y dy\right)^{2} dx \right|$$

$$= \int_{0}^{\sqrt{3}} x\sqrt{1+x^{2}} \left(\frac{y^{2}}{2}\right)^{2} dx \qquad \left| \left(\int_{1}^{2} y dy\right)^{2} dx \right|$$

$$= \int_{0}^{\sqrt{3}} x\sqrt{1+x^{2}} \left(\frac{y^{2}}{2}\right)^{2} dx \qquad \left| \left(\int_{1}^{2} y dy\right)^{2} dx \right|$$

$$= \int_{0}^{\sqrt{3}} \sqrt{1+x^{2}} \left(\frac{y^{2}}{2}\right)^{2} dx \qquad \left| \left(\int_{1}^{2} y dy\right)^{2} dx \right|$$

$$= \int_{0}^{\sqrt{3}} \sqrt{1+x^{2}} dx \qquad \left| \left(\int_{1}^{2} y dy\right)^{2} dx \right|$$

$$= \int_{0}^{\sqrt{3}} \sqrt{1+x^{2}} dx \qquad \left| \left(\int_{1}^{2} y dy\right)^{2} dx \right|$$

$$= \frac{3}{2} \int_{1}^{\sqrt{3}} x\sqrt{1+x^{2}} dx \qquad \left| \left(\int_{1}^{2} y dy\right)^{2} dx \right|$$

$$= \frac{3}{2} \int_{1}^{\sqrt{3}} \sqrt{1+x^{2}} dx \qquad \left| \left(\int_{1}^{2} y dy\right)^{2} dx \right|$$

$$= \frac{3}{2} \int_{1}^{\sqrt{3}} \sqrt{1+x^{2}} dx \qquad \left| \left(\int_{1}^{2} y dy\right)^{2} dx \right|$$

$$= \frac{3}{2} \int_{1}^{\sqrt{3}} \sqrt{1+x^{2}} dx \qquad \left| \left(\int_{1}^{2} y dy\right)^{2} dx \right|$$

$$= \frac{3}{2} \int_{1}^{\sqrt{3}} \sqrt{1+x^{2}} dx \qquad \left| \left(\int_{1}^{2} y dy\right)^{2} dx \right|$$

$$= \frac{3}{2} \int_{1}^{\sqrt{3}} \sqrt{1+x^{2}} dx \qquad \left| \left(\int_{1}^{2} y dy\right)^{2} dx \right|$$

$$= \frac{3}{2} \int_{1}^{\sqrt{3}} \sqrt{1+x^{2}} dx \qquad \left| \left(\int_{1}^{2} y dy\right)^{2} dx \right|$$

$$= \frac{3}{2} \int_{1}^{\sqrt{3}} \sqrt{1+x^{2}} dx \qquad \left| \left(\int_{1}^{2} y dy\right)^{2} dx \right|$$

$$= \frac{3}{2} \int_{1}^{\sqrt{3}} \sqrt{1+x^{2}} dx \qquad \left| \left(\int_{1}^{2} y dy\right)^{2} dx \right|$$

$$= \frac{3}{2} \int_{1}^{\sqrt{3}} \sqrt{1+x^{2}} dx \qquad \left| \left(\int_{1}^{2} y dy\right)^{2} dx \right|$$

$$= \frac{3}{2} \int_{1}^{\sqrt{3}} \sqrt{1+x^{2}} dx \qquad \left| \left(\int_{1}^{2} y dy\right)^{2} dx \qquad \left| \left(\int_{1}^{2} y dy\right)^{2} dx \right|$$

$$= \frac{3}{2} \int_{1}^{\sqrt{3}} \sqrt{1+x^{2}} dx \qquad \left| \left(\int_{1}^{2} y dy\right)^{2} dx \right|$$

$$= \frac{3}{2} \int_{1}^{\sqrt{3}} \sqrt{1+x^{2}} dx \qquad \left| \left(\int_{1}^{2} y dy\right)^{2} dx \right|$$

$$= \frac{3}{2} \int_{1}^{\sqrt{3}} \sqrt{1+x^{2}} dx \qquad \left| \left(\int_{1}^{2} y dy\right)^{2} dx \right|$$

$$= \frac{3}{2} \int_{1}^{\sqrt{3}} \sqrt{1+x^{2}} dx \qquad \left| \left(\int_{1}^{2} y dy\right)^{2} dx \qquad \left| \left(\int_{1}^{\sqrt{3}} y dy\right)^{2} dx \qquad \left| \left(\int_{1}^{\sqrt{3}} y dy\right)^{2} dx \qquad \left| \left(\int_{1}^{2} y dy\right)^{2} dx \qquad \left| \left(\int_{1}^{\sqrt{3}} y dy\right)^{2} dx \qquad \left| \left(\int_{1}^{\sqrt{3}} y dy\right)^{2} dx \qquad \left| \left(\int_{1}^{\sqrt{3}} y dy\right)^{2}$$

Most of the time $f(x,y) \neq h(y)g(x)$

EX 7 Find the volume of the solid in the first octant enclosed by $z = 4-x^2$ and y = 2.

