

Now we will see an easier way to solve extrema problems with some constraints.

We want to optimize $f(x, y)$ subject to constraint $g(x, y)=0$.
Graphically:
\ulcorner : level curves $(f(x, y)=k)$
-: constraint curve

To maximize f subject to $g(x, y)=0$ means to find the level curve of f with greatest k-value that intersects the constraint curve. It will be the place where the two curves are tangent.

Two curves have a common perpendicular line if they are tangent at that point. We know ∇f is perpendicular to its level curves. ∇g is also perpendicular to the constraint curve.

Theorem (Lagrange's Method)

To maximize or minimize $f(x, y)$ subject to constraint $g(x, y)=0$, solve the system of equations
$\nabla f(x, y)=\lambda \nabla g(x, y)$ and $g(x, y)=0$
for (x, y) and λ. The solutions (x, y) are critical points for the constrained extremum problem and the corresponding λ is called the Lagrange Multiplier.

Note: Each critical point we get from these solutions is a candidate for the max/min.

EX 1 Find the maximum value of $f(x, y)=x y$ subject to the constraint $g(x, y)=4 x^{2}+9 y^{2}-36=0$.

EX 2 Find the least distance between the origin and the plane $x+3 y-2 z=4$.

EX 3 Find the max volume of the first-octant rectangular box (with faces parallel to coordinate planes) with one vertex at $(0,0,0)$ and the diagonally opposite vertex on the plane $3 x-y+2 z=1$.

If we have more than one constraint, additional Lagrange multipliers are used. If we want to maiximize $f(x, y, z)$ subject to $g(x, y, z)=0$ and $h(x, y, z)=0$, then we solve

$$
\nabla f=\lambda \nabla g+\mu \nabla h \text { with } g=0 \text { and } h=0 .
$$

EX 4 Find the minimum distance from the origin to the line of intersection of the two planes.

$$
x+y+z=8 \quad \text { and } \quad 2 x-y+3 z=28
$$

Lagrange multipliers don't work well for constraint regions like a square or triangle because there is not one equation to represent $g(x, y)=0$.

