emm—————.

T B0 =e

x=2y
dy
x=0

1
?xydxdy = _! [%y]
0

i




Now we will see an easier way to solve extrema problems with some
constraints.

We want to optimize f{x,y) subject to constraint g(x,y) = 0.
Graphically:
7 level curves (f{x,y) = k)

— : constraint curve

To maximize f'subject to g(x,y) = 0 means to find the level curve of f'with
greatest k-value that intersects the constraint curve. It will be the place
where the two curves are tangent.

Two curves have a common perpendicular line if they are tangent at that

point. We know Vf is perpendicular to its level curves. Vg is also
perpendicular to the constraint curve.
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Theorem (Lagrange's Method)

To maximize or minimize f{x,y) subject to constraint g(x,y)=0, solve the
system of equations

O vy = ey aan(x,y) =0

for (x,y) and 4. The solutions (x,y) are critical points for the
constrained extremum problem and the corresponding
J is called the Lagrange Multiplier.

Note: Each critical point we get from these solutions is a candidate
for the max/min.

EX 1 Find the maximum value of f{x,y) = xy subject to the constraint
gly) =4x2 + 97 -36=0.
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EX 2 Find the least distance between the origin and the plane
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EX 3 Find the max volume of the first-octant rectangular box (with faces
parallel to coordinate planes) with one vertex at (0,0,0) and the

diagonally opposite vertex on the plane 3x +y + 2z = I.
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If we have more than one constraint, additional Lagrange multipliers
are used. If we want to maiximize f{x,y,z) subject to g(x,y,z)=0 and

h(x,y,z)=0, then we solve

! Vf= Vg + uVh with g=0 an@

EX 4 Find the minimum distance from the origin to the line of

intersection of the two planes.
xty+z=38 and 2x-y+3z=28
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Lagrange multipliers don't work well for constraint regions like a
square or triangle because there is not one equation to represent

g(x,y)=0.



