$$
\begin{aligned}
& \int_{0}^{1} \int_{0}^{2 y} x y d x d y=\int_{0}^{1}\left[\frac{x^{2}}{2} y\right]_{x=0}^{x=2 y} d y \\
& =\int_{0}^{1} \frac{(2 y)^{2}}{2} y d y=\int_{0}^{1} 2 y^{3} d y \\
& =\left[\frac{y^{4}}{2}\right]_{y=0}^{y=1}=\frac{1}{2}
\end{aligned}
$$

Maxima and Minima

Recall from Calculus I: (curves in 2- d)

1) Critical points (where $f^{\prime}(x)=0$ or DNE) are the candidates for where local min and max points can occur.
2) You can use the Second Derivative Test (SDT) to test whether a given critical point is a local min or max. SDT is not always conclusive.
3) Global max and min of a function on an interval can occur at a critical point in the interior of the interval or at the endpoints of

$\left.\begin{array}{l}\text { global max occurs at pt } A \\ \text { global min "1 "} \\ \text { gl a }\end{array}\right\}$ on $[a, b]$

Extreme Values

1) f has a global maximum at a point (a, b) if $f(a, b) \geq f(x, y)$ for all (x, y) in the domain of f. f has a local maximum at a point (a, b) if $f(a, b)) \geq f(x, y)$ for all (x, y) near (a, b).
2) f has a global minimum at a point (a, b) if $f(a, b) \leq f(x, y)$ for all (x, y) in the domain of $f . f$ has a local minimum at a point (a, b) if $f(a, b)) \leq f(x, y)$ for all (x, y) near (a, b).
 in some direction but down in another)
Bifocal min pt ("valley pts")
global min/max pts:
global max at A
global min at B

Theorem (Critical Point)

Let f be defined on a set S containing (a, b). If $f(a, b)$ is an extreme value (max or min),
then (a, b) must be a critical point, i.e. either (a, b) is
a) a boundary point of S (assumes S is closed \mathcal{f}
b) a stationary point of S (where $\nabla f(a, b)=\overrightarrow{0}$, i.e. the tangent plane is horizontal)
c) a singular point of S (where f is not differentiable).

Fact: Critical points are candidate points for both global and local extrema.

global min (statio nan $p t$)

Theorem (Max-Min Existence)

If f is continuous on a closed, bounded set S, then f attains both a global max value and a global min value there.

Mint

Second Partials Test Theorem

Suppose $f(x, y)$ has continuous second partial derivatives in a neighborhood of (a, b) and $\nabla f(a, b)=\overrightarrow{0}$.

Let $D=D(a, b)=f_{x x}(a, b) f_{y y}(a, b)-f_{x y}{ }^{2}(a, b)$
then

1) If $D>0$ and $f_{x x}(a, b)<0$, then $f(a, b)$ is a local max.
2) If $D>0$ and $f_{x x}(a, b)>0$, then $f(a, b)$ is a local min. $\} f_{x x}(a, b)$
3) If $D<0$, then $f(a, b)$ is not an extreme value. ((a, b) is a saddle point.)
4) If $D=0$ the test is inconclusive.

EX 1 For $f(x, y)=x y^{2}-6 x^{2}-3 y^{2}$, find all critical points,
indicating whether each is a local min, a local max or saddle point.

$$
\begin{gathered}
f_{x}=y^{2}-12 x \quad \quad f_{y}=2 x y-6 y \\
f_{x x}=-12, f_{y y}=2 x-6, f_{x y}=2 y \\
D=f_{x x} f_{y y}-f_{x y}^{2}=-12(2 x-6)-(8 y)^{2} \\
=-24 x+72-4 y^{2}
\end{gathered}
$$

possible station any/singular pts:

$$
\left.\nabla f=\left\langle y^{2}-\mid 2 x, 2 x y-6 y\right\rangle=\langle 0,0\rangle \quad \begin{array}{c}
\text { (statible } \\
\text { pts }
\end{array}\right)
$$

note. no singular pts (∇f well-defined everywhere)

$$
\begin{aligned}
& \text { (1) } y^{2}-12 x=0 \text { and (2) } 2 x y-6 y=0 \\
& y^{2}=12 x \\
& x=\frac{y^{2}}{12} \longrightarrow 2\left(\frac{y^{2}}{12}\right) y-6 y=0 \\
& \\
& \\
& \\
& \\
& \\
& \\
& \\
& \\
& \\
& y=0 y^{3}-6 y=0 \\
& y=0,6,-6
\end{aligned}
$$

$$
\begin{aligned}
\Rightarrow & \text { if } y=0, x=\frac{0^{2}}{12}=0 \quad A(0,0) \\
& \text { if } y=6, x=\frac{(\pm 6)^{2}}{12}=3 B(3,6)(3,-6) \\
D= & -24 x+72-4 y^{2}, f_{x_{x}}=-12 \\
P^{+} A: \quad D= & -24(0)+72-4(0)=72>0 \\
& f_{x_{x}}(0,0)=-12<0 \Rightarrow \text { max p+ }
\end{aligned}
$$

$p+B: \quad D=-24(3)+72-4(36)=0-4(36)<0$
\Rightarrow saddle $\mathrm{p}+$
pt C: $D=-24(3)+72-4(36)<0$
no local min pt

$$
\begin{array}{|l|l|}
\hline \begin{aligned}
& \text { max pt: }(0,0,0) \text { saddle pt } \\
& \text { sa addle pts: }(3,6,-54) \\
&(3,-6,54)
\end{aligned} & z=x y^{2}-6 x^{2}-3 y^{2} \\
& >z=3(6)-6\left(3^{2}\right)-3\left(6^{6}\right)=-54
\end{array}
$$

EX 2 Find the global max and min values for
$f(x, y)=x^{2}-y^{2}-1$ on
$\underbrace{S=\left\{(x, y) \mid x^{2}+y^{2} \leq 1\right\}}$
bandy

$$
\begin{aligned}
& f_{x}=2 x, \quad f_{y}=-2 y \\
& \nabla f=\langle 2 x,-2 y\rangle=\langle 0,0\rangle
\end{aligned}
$$

$x=0$, and $y=0$ stationary pt to
note: no singular pts this tums consider boundary pts: $\left\{(x, y) \mid x^{2}+y^{2}=1\right\}$ be a saddle by inspection: we can sec that max pts occur along x-axis and min pts occur along y-axis.
along x-axis: $y=0, \quad x^{2}+0^{2}=1 \Rightarrow x= \pm 1$

$$
f(\pm 1,0)=(\pm 1)^{2}-0^{2}-1=0 \quad \begin{aligned}
& \text { want } \\
& \text { pts } \\
& (\pm 1,0,0)
\end{aligned}
$$

along y-axis: $x=0,0^{2}+y^{2}=1 \Rightarrow y= \pm 1$

$$
\begin{aligned}
& f(0, \pm 1)=0^{2}-(\pm 1)^{2}-1=-2 \quad \begin{array}{c}
\text { min pts } \\
(0 \pm 1,-2)
\end{array} \\
& \text { ry, we can argue: }
\end{aligned}
$$

Similarly, we can argue:
(consider local mim/max pts and bury pts)
hyperbolic paraboloid pt
$f(x, y)=x^{2}-y^{2}-1 \quad$ w/ bunny info $y^{2}=1-x^{2}$
$z=f(x, y)=x^{2}-\left(1-x^{2}\right)-1=2 x^{2}-2$ (a fr of

$$
z=2 x^{2}-2
$$ x only)

$$
\frac{d z}{d x}=z^{\prime}=4 x=0 \Leftrightarrow x=0
$$

min pt at $(0, \pm 1,-2)$

$$
\boldsymbol{Z}=f(x, y)=x^{2}+y^{2} \quad \text { on } S=\{(x, y) \mid x \in[-1,3], y \in[-1,4]\} \text {. }
$$

domain $x=1 x^{5}$ 気 $x=3$ (1)

$$
f_{x}=2 x, f_{y}=2 y
$$

$$
\nabla f=\langle 2 x, 2 y\rangle=\langle 0,0\rangle \Leftrightarrow \begin{aligned}
& x=0 \\
& y=0
\end{aligned}
$$

$(0,0,0)$ min pt. (global)
max pt is somewhere on the body
case (1) $x=3$:

$$
\begin{aligned}
& z=3^{2}+y^{2} \\
& z=9+y^{2} \quad \Psi^{2} n
\end{aligned}
$$

(want to look for max pts)

$$
y \in[-1,4]
$$

\Rightarrow max pt occurs at bunny pt (y, z)

$$
(-1,10) \quad z=9+1
$$

$$
(4,25) \quad z=9+y^{2}
$$

case (3) $x=-1$

$$
z=1+y^{2} \quad y \in[-1,4]
$$

bunny pts (y, z)

$$
\begin{aligned}
& (-1,2) z=1+1 \\
& (4,17) z=1+16
\end{aligned}
$$

case (2) $y=-1$

$$
z=x^{2}+1 \quad \frac{3}{4} x
$$

max pt will be a bung pt; buddy $x \in[-1,3]$

$$
\begin{array}{ll}
(-1,2) & z=1+1 \\
(3,10) & z=9+1
\end{array}
$$

case (4) $y=4$

$$
z=16+x^{2} \quad x \in[-1,3]
$$

bunny pts (x, z)

$$
\begin{aligned}
& (-1,17) \quad z=16+1 \\
& (3,25) z=16+9
\end{aligned}
$$

possible max pts: (on surface)
(1)

$$
\begin{align*}
& (3,-1,10) \tag{2}\\
& (3,4,25)
\end{align*}
$$

$$
(-1,-1,2)
$$

(3) $(-1,-1,2)$

$$
(3,-1,10)
$$

(4) $(-1,4,17)$

$$
(3,4,25)
$$

$\Rightarrow g l o b a l$ max occurs at $(3,4,25)$

EX 4 Find the 3-D vector of length 9 with the largest possible sum of its components.

$$
x^{2}+y^{2}+z^{2}=9^{2}
$$

because of symmetry.

our pt will be in $1^{\text {st }}$ octant.
$f=x+y+z \Rightarrow f(x, y)=x+y+\sqrt{81-x^{2}-y^{2}}$
(domain $x^{2}+y^{2} \leq 81$)
$\nabla f=\left\langle 1+\frac{-2 x}{2 \sqrt{81-x^{2}-y^{2}}}, 1+\frac{-2 y}{2 \sqrt{81-x^{2}-y^{2}}}\right\rangle=\langle 0,0\rangle$
(1) $1+\frac{-2 x}{x \sqrt{81-x^{2}-y^{2}}}=0$ and (2) $1+\frac{-2 y}{2 \sqrt{81-x^{2}-y^{2}}}=0$
$81-x^{2}-y^{2}=x^{2}$
$81=2 y^{2}+x^{2}$
$81=2 x^{2}+y^{2}$

$$
\Rightarrow 2 x^{2}+y^{2}=2 y^{2}+x^{2}
$$

$$
\text { (2a) } x^{2}=y^{2}
$$

(1) $81=2 x^{2}+x^{2} \quad$ (substitute $y^{2}=x^{2}$)

$$
x^{2}=27 \Rightarrow x= \pm \sqrt{3} \quad \stackrel{\text { choose }}{\Rightarrow} x=3 \sqrt{3}
$$

(2a) $y=3 \sqrt{3} \quad$ (to be in octant 1)
$f(3 \sqrt{3}, 3 \sqrt{3})=3 \sqrt{3}+3 \sqrt{3}+\sqrt{81-27-27}$
$=3 \sqrt{3}+3 \sqrt{3}+3 \sqrt{3}=9 \sqrt{3}$
note: if we check boundary pts $x^{2}+y^{2}=81$
we get possible max pts at

$$
\begin{aligned}
(x, y)= & (\pm 9 / \sqrt{2}, \pm 9 / \sqrt{2}) \Rightarrow f(\pm 9 / \sqrt{2}, \pm 9 / \sqrt{2})=0 \\
& \text { both those f-values }<9 \sqrt{3} \\
\Rightarrow & \text { max truly occurs at }(x, y)=(3 \sqrt{3}, 3 \sqrt{3})
\end{aligned}
$$

Fdvector we want: $\langle x, y, z\rangle$ where

$$
z=\sqrt{81-x^{2}-y^{2}}
$$

$$
\text { is }\langle 3 \sqrt{3}, 3 \sqrt{3}, 3 \sqrt{3}\rangle
$$

