

Tangent Planes

$=\left[\frac{y^{4}}{2}\right]_{y=0}^{y=1}=\frac{1}{2}$

Tangent Planes

> We already dealt with tangent planes to surfaces of form $z=f(x, y)$. Now, we will find tangent planes to surfaces of form $F(x, y, z)=k$, i.e. a surface represented by any equation in three variables.

Definition

Let $F(x, y, z)=k$ be a surface, F, differentiable at $P\left(x_{0}, y_{0}, z_{0}\right)$ with $\nabla F\left(x_{0}, y_{0}, z_{0}\right) \neq \overrightarrow{0}$. Then the plane through P and perpendicular to $\nabla F\left(x_{0}, y_{0}, z_{0}\right)$ is called the tangent plane to the surface at P.

Theorem
For surface $F(x, y, z)=k$, the equation of the tangent plane at $\left(x_{0}, y_{0}, z_{0}\right)$ is

$$
\begin{aligned}
& \nabla F(x, y, z) \cdot\left\langle x-x_{0}, y-y_{0}, z-z_{0}\right\rangle=0 \\
& \Leftrightarrow 3-d \text { gradient } \\
& F_{x}\left(x_{0}, y_{0}, z_{0}\right)\left(x-x_{0}\right)+F_{y}\left(x_{0}, y_{0}, z_{0}\right)\left(y-y_{0}\right)+F_{z}\left(x_{0}, y_{0}, z_{0}\right)\left(z-z_{0}\right)=\mathbf{0} .
\end{aligned}
$$

EX 1 Find the equation of the tangent plane to $8 x^{2}+y^{2}+8 z^{2}=16$ at $\left(1,2, \frac{\sqrt{2}}{2}\right)$.

$$
\nabla F=\left\langle F_{x}, F_{y}, F_{z}\right\rangle=\langle 16 x, 2 y, 16 z\rangle
$$

$$
\vec{n}=\nabla F\left(1,2, \frac{\sqrt{2}}{2}\right)=\left\langle 16(1), 2(2), 16\left(\frac{\sqrt{2}}{2}\right)\right\rangle
$$

pt $\quad=\langle 16,4,8 \sqrt{2}\rangle=4\langle 4,1,2 \sqrt{2}\rangle$

$$
\left(x_{0}, y_{0}, z_{0}\right)=\left(1,2, \frac{\sqrt{2}}{2}\right)
$$

$$
\begin{gathered}
\nabla F\left(1,2, \frac{\sqrt{2}}{2}\right\rangle \cdot\left\langle x-1, y-2, z-\frac{\sqrt{2}}{2}\right\rangle=0 \\
\langle 4,1,2 \sqrt{2}\rangle \cdot\left\langle x-1, y-2, z-\frac{\sqrt{2}}{2}\right\rangle=0 \\
4 x-4+y-2+2 \sqrt{2} z-2=0 \\
4 x+y+2 \sqrt{2} z=8
\end{gathered}
$$

$z=f(x, y)$ (explicitly given f_{n})

$$
\left.\begin{array}{rl}
F_{x}=-f_{x}, F_{y}=-f_{y} \\
F_{z}=1
\end{array}\left|\begin{array}{l}
Z-f(x, y)
\end{array}\right| \begin{array}{l}
\text { tangent plane at }\left(x_{0}, y, z_{0}\right): \\
\left\langle F_{x}, F_{y}, F_{z}\right\rangle \cdot\left\langle x-x_{0}, y-y, z-z_{0}\right\rangle=0 \\
\left\langle-f_{x},-f_{y}, 1\right\rangle \cdot\left\langle x-x_{0}, y-y_{0}, z-z_{0}\right\rangle \\
-f_{x}\left(x-x_{0}\right)-f_{y}\left(y-y_{0}\right)+z-z_{0}=0
\end{array}\right\} \begin{aligned}
& z=z_{0}+f_{x}\left(x-x_{0}\right)+f_{y}\left(y-y_{0}\right) \\
& \text { eqn of tangent } \\
& \text { plane form the past", }
\end{aligned}
$$

EX 2 Find parametric equations of the line that is tangent to the curve of intersection of these surfaces at the point (1,2,2).

$$
\begin{aligned}
& f(x, y, z)=9 x^{2}+4 y^{2}+4 z^{2}-41=0 \\
& g(x, y, z)=2 x^{2}-y^{2}+3 z^{2}-10=0
\end{aligned}
$$

For a line, we need a vector \vec{v} in direction of the line and we reed a pt on the line.
The line that's tangent to curve of intersects is \perp to ∇f and ∇g.

$$
\begin{aligned}
& \Rightarrow \vec{V}=\nabla f x \nabla g \\
& \nabla f=\left\langle f_{x}, f_{y}, f_{z}\right\rangle=\langle 18 x, 8 y, 8 z\rangle \\
& \nabla g=\left\langle g_{x}, g_{y}, g_{z}\right\rangle=\langle 4 x,-2 y, 6 z\rangle \\
& \begin{aligned}
& \vec{V}_{x}=\left|\begin{array}{cc}
\hat{\imath} & \hat{\jmath} \\
18 x & \hat{h} \\
8 y & f z \\
4 x-2 y & 6 z
\end{array}\right|=(48 y z+16 y z) \hat{\imath} \\
&-(108 x z-32 x z) \hat{\jmath} \\
&+(-36 x y-32 x y) \hat{k}
\end{aligned} \\
&==64 y z \hat{\imath}-76 x z \hat{\jmath}-68 x y \hat{k} \\
& \text { at } \begin{aligned}
(1,2,2)\rangle & =4(16 y z \hat{\imath}-19 x \hat{\jmath}-17 x y \hat{k}) \\
\vec{V}= & 4
\end{aligned} \\
&(16(2)(2) \hat{\imath}-19(1)(2) \hat{\jmath}-17(1)(2) \hat{k}) \\
&= 4(2)(\underbrace{32 \hat{\imath}-19 \hat{\jmath}-17 \hat{k})}
\end{aligned}
$$

tangent

$$
\text { line: }\left\{\begin{array}{l}
x=1+32 t \\
y=2+(-19 t) \\
z=2+(-17 t)
\end{array}\right.
$$

Definition z as explicit fr $x x$ and y
Let $z=f(x, y), f$ is differentiable function, $d x$ and $d y$ (differentials) are variables. $d z$ (also called total differential of f) is $d z=d f(x, y)=f_{x}(x, y) d x+f_{y}(x, y) d y=\nabla f \cdot(d x, d y)$.
reminder:
tangent plane: (for explicit surface)
$d x=$ "a latte
bit of $x^{\prime \prime}$
$d y=$ "a little

$$
\begin{aligned}
& z=f(a, b)+f_{x}(a, b)(x-a)+f_{y}(a, b)(y-b) \quad \text { bit of } y^{\prime \prime} \\
& \underbrace{z-f(a, b)}_{d z}=f_{x}(a, b) d x+f_{y}(a, b) d y \quad \text { if }(a, b) \approx(x, y) \\
& \text { (ie. tangent plane }
\end{aligned}
$$

lie. tangent plane
$d z=f_{x} d x+f_{y} d y \quad \begin{aligned} & \text { ice. tangent plane } \\ & \text { approximates surface well }\end{aligned}$
EX 3 Use differentials to approximate the change in z as $(x, y$) far away moves from P to Q. Also find Δz. (actual change)
$d z=f_{x} d x+f_{y}^{f} d y$
$d x=2.03-2=0.03$
$d y=2.98-3=-0.02$
$f_{x}=2 x-5 y$ at $p+(2,3)$
$f_{y}=-5 x+1$

$$
f_{x}=2(2)-5(3)=4-15=-11
$$

$$
f_{y}=-5(2)+1=-9
$$

$$
d z=-11(0.03)+-9(-0.02)
$$

$=-0.33+0.18=-0.15$ (approx change in
actual change in z :

$$
\begin{aligned}
\Delta z & =z(2.03,2.98)-z(2,3) \\
& =\left(2.03^{2}-5(2.03)(2.98)+2.98\right)-\left(2^{2}-5(2)(3)+3\right) \\
& =-23.1461-(-23) \\
& =-0.1461
\end{aligned}
$$

EX 4 Use differentials to find the approximate amount of copper in the four sides and bottom of a rectangular copper tank that is 6 feet long, 4 feet wide and 3 feet deep inside, if the sheet-copper is $1 / 4$ inch thick. (note: $3,6,4 \mathrm{ft}$ measurements are (rectangular box measurements)

$$
d V \approx \Delta V
$$ lid)

we want to approximate ΔV.

$$
d V=V_{x} d x+V_{y} d y+V_{z} d z=y z d x+x z d y+x y d z
$$

$$
d x=d y=d z=\frac{1}{2} \text { in }=0.5 \mathrm{in}, x=4 \mathrm{ft}, y=6 \mathrm{ft}, z=3 \mathrm{ft}
$$

$$
d x=d y=d z=\frac{1}{24} \mathrm{ft}
$$

$$
\begin{aligned}
\Delta V \simeq d V & =6(3)\left(\frac{1}{24}\right)+4(3)\left(\frac{1}{24}\right)+4(6)\left(\frac{1}{24}\right) \\
& =3
\end{aligned}
$$

$$
=\frac{3}{4}+\frac{1}{2}+1=2 \frac{1}{4} \text { or } \frac{9}{4} \mathrm{ft}^{3}
$$

(approx volume of sheet copper)
note: actual volume of sheet-copper

$$
\Delta V=V_{\text {outside }}-V_{\text {inside }}
$$

relative volume: approx

$$
=\frac{9 / 4}{3(6)(4)}=\frac{1}{32}=0.03125=3.125 \%
$$

EX 5 A piece of cable (cylindrical) that measures 2 meters long with a radius of 2 centimeters is thought to have measurement error as large as 5 millimeters for each of the height and radius measurements. Estimate the error in the volume measurement.

$$
\begin{aligned}
& \underbrace{\frac{r=2 \mathrm{~cm}}{0}}_{h=2 m=200 \mathrm{~cm}} \\
& d h=d r=5 \mathrm{~mm} \\
& =0.5 \mathrm{~cm} \\
& \Delta V \approx d V=V_{r} d r+V_{h} d h \quad V=\pi r^{2} h \\
& =2 \pi r h d r+\pi r^{2} d h \\
& =2 \pi(2)(200)(0.5)+\pi\left(2^{2}\right)(0.5) \\
& =400 \pi+2 \pi=402 \pi \simeq 1262.9 \mathrm{~cm}^{3}
\end{aligned}
$$

approx error in volunce is $\pm 1262.9 \mathrm{~cm}^{3}$
for explicit f_{n} : (for implicit f_{n} :

$$
\begin{array}{c|cc}
f(x, y)=z & F(x, y, i)=k & , k \in \mathbb{R} \\
\nabla f=\left\langle f_{x}, f_{y}\right\rangle & \nabla F=\left\langle F_{x}, F_{y}, F_{z}\right\rangle & \text { (constant) }
\end{array}
$$

\perp to level cones \perp to surface!.! of $z=f(x, y)$
for explicit fin $z=f(x, y)$

$$
\Leftrightarrow \underbrace{f(x, y)-z}_{F}=0
$$

Fd gradient $\left\langle f_{x}, f_{y},-1\right\rangle$
\perp to surface $z=f(x, y)$.

