$$
\int_{0}^{1} \int_{0}^{2 y} x y d x d y=\int_{0}^{1}\left[\frac{x^{2}}{2} y\right]_{x=0}^{x=2 y} d y
$$

$$
=\int_{0}^{1} \frac{(2 y)^{2}}{2} y d y=\int_{0}^{1} 2 y^{3} d y
$$

The Chain Rule

Recall: Chain rule for $y=f(g(x))$ is $y^{\prime}=f^{\prime}(g(x)) g^{\prime}(x)=\frac{d f}{d g} \frac{d g}{d x}$.
Chain Rules
Theorem
Let $x=x(t)$ and $y=y(t)$ be differentiable at t and let $z=f(x, y)$ be differentiable at $(x(t), y(t)$).
Then $z=f(x(t), y(t))$ is differentiable at t and

$$
\frac{d z}{d t}=\frac{\partial z}{\partial x} \frac{d x}{d t}+\frac{\partial z}{\partial y} \frac{d y}{d t} \Leftrightarrow \frac{d z}{d t}=\nabla f \cdot\left\langle\frac{d x}{d t}, \frac{d y}{d t}\right\rangle
$$

Theorem
Let $x=x(s, t)$ and $y=y(s, t)$ have first partial derivatives at $=\langle s, t\rangle$ and let $z=f(x, y)$ be differentiable at $(x(s, t), y(s, t))$.
Then z has first partial derivatives given by

$$
\begin{aligned}
& \frac{\partial z}{\partial s}=\frac{\partial z}{\partial x} \frac{\partial x}{\partial s}+\frac{\partial z}{\partial y} \frac{\partial y}{\partial s} \\
& \frac{\partial z}{\partial t}=\frac{\partial z}{\partial x} \frac{\partial x}{\partial t}+\frac{\partial z}{\partial y} \frac{\partial y}{\partial t}
\end{aligned}
$$

EX 1 Find $\frac{\partial w}{\partial t}$ given $w=x^{2} y-y^{2} x, x=\cos t, y=\sin t$.
Express the answer in terms of t.

$$
\begin{aligned}
(1) & w=w(x, y) \\
w= & x^{2} y-y^{2} x \\
= & (\cos t)^{2}(\sin t)-(\sin t)^{2} \cos t \\
= & \cos ^{2} t \sin t-\sin ^{2} t \cos t \\
\frac{d w}{d t}= & 2 \cos t(-\sin t) \sin t \\
& +\cos ^{2} t(\cos t) \\
& -(2 \sin t \cos t(\cos t) \\
& \left.+\sin ^{2} t(-\sin t)\right) \\
\frac{d w}{d t}= & -2 \cos t \sin ^{2} t+\cos ^{3} t \\
& -2 \sin t \cos ^{2} t+\sin ^{3} t
\end{aligned}
$$

(2)

$$
\begin{aligned}
& \omega(x, y)=x^{7} y-y^{2} x \\
& \frac{d \omega}{d t}=\frac{\partial w}{\partial x} \frac{d x}{d t}+\frac{\partial w}{\partial y} \frac{d y}{d t} \\
& =\left(2 x y-y^{2}\right)(-\sin t) \\
& \quad+\left(x^{2}-2 y x\right)(\cos t) \\
& =\left(2 \sin t \cos t-\sin ^{2} t\right)(3 \sin t) \\
& \quad+\left(\cos ^{2} t-2 \cos t \sin t\right) \cos t
\end{aligned}
$$

EX 2 Find $\frac{\partial w}{\partial t}$ given $w=\ln (x+y)-\ln (x-y), \quad x=t e^{s}, \quad y=e^{s t}$.
Express the answer in s and t.

$$
\begin{aligned}
\frac{\partial w}{\partial t} & =\frac{\partial w}{\partial x} \cdot \frac{\partial x}{\partial t}+\frac{\partial w}{\partial y} \cdot \frac{\partial y}{\partial t} \\
& =\left(\frac{1}{x+y}-\frac{1}{x-y}\right)\left(e^{s}\right)+\left(\frac{1}{x+y}-\frac{-1}{x-y}\right)\left(e^{s t} s\right) \\
& =\left(\frac{1}{t e^{s}+e^{s t}}-\frac{1}{t e^{s}-e^{s t}}\right)\left(e^{s}\right)+\left(\frac{1}{t e^{s}+e^{s t}}+\frac{1}{t e^{s}-e^{s t}}\right)\left(e^{s t} s\right)
\end{aligned}
$$

EX 3 If $w=x y+x+y, \quad x=r+s+t$ and $y=r s t$,
find $\left.\frac{\partial w}{\partial t}\right|_{\mathrm{r}=1, \mathrm{~s}=-1, \mathrm{t}=2}$.

$$
\begin{aligned}
& \frac{\partial w}{\partial t}=\frac{\partial w}{\partial x} \frac{\partial x}{\partial t}+\frac{\partial w}{\partial y} \frac{\partial y}{\partial t} \\
& \begin{aligned}
\frac{\partial w}{\partial t} & =(y+1)(1)+(x+1)(r s) \\
& =r s t+1+r s(r+s+t+1) \\
\begin{aligned}
\left.\frac{\partial w}{\partial t}\right|_{(1,-1,2)} & =1(-1)(2)+1+1(-1)(1+-1+2+1) \\
& =(r, s, t)
\end{aligned} & =-2+1-(3) \\
& =-4
\end{aligned}
\end{aligned}
$$

EX 4 Sand is pouring onto a conical pile in such a way that at a certain instant, the height is 100 inches and increasing at $3 \mathrm{in} / \mathrm{min}$. The base radius at that instant is 40 inches and increasing at $2 \mathrm{in} / \mathrm{min}$. How fast is the volume increasing at that instant?

r, h are changing over time

$$
V=\frac{1}{3} \pi r^{2} h \quad(V=V(r, h))
$$

know: $\begin{cases}h=100 \text { in } & \frac{d h}{d t}=3 \mathrm{im} / \mathrm{min} \\ r=40 \text { in } & \frac{d r}{d t}=2 \mathrm{im} / \mathrm{min} .\end{cases}$
Qu: $\frac{d V}{d t}=$? when above is true \uparrow

$$
\begin{aligned}
& \frac{d V=}{d t} \frac{\partial V}{\partial r} \frac{d r}{d t}+\frac{\partial V}{\partial h} \frac{d h}{d t}=\frac{2}{3} \pi r h\left(\frac{d r}{d t}\right)+\frac{1}{3} \pi r^{2}\left(\frac{d h}{d t}\right) \\
&=\frac{2}{3} \pi(40)(100)(2) \\
&=\frac{16000}{3} \pi+\left(40^{2}\right)(3) \\
&=\frac{20800}{3} \pi \mathrm{in}^{3} / \mathrm{min} \\
& \simeq 21,781.71 \mathrm{in}^{3} / \mathrm{min}
\end{aligned}
$$

Let's go back to $y=f(x)$ and assume that instead of getting y as a function of x (explicitly), we have $F(x, y)=k$, for any constant, k (i.e. y is defined implicitly). Then, we just differentiated both sides with respect to x to get $d y / d x$.
y is a fro of x.
For example:

$$
\begin{aligned}
& \frac{d}{d x}\left(y^{3}-2 x y+3 x=4\right) \\
& \frac{d}{d x}\left(y^{3}\right)-2 \frac{d}{d x}(x y) \\
& +3 \frac{d}{d x}(x)=\frac{d}{d x}(y) \\
& 3 y^{2} \frac{d y}{d x}-2\left(1 y+x \frac{d y}{d x}\right) \\
& +3(1)=0 \\
& \frac{d y}{d x}\left(3 y^{2}-2 x\right)=2 y-3 \\
& \frac{d y}{d x}=\frac{2 y-3}{3 y^{2}-2 x}
\end{aligned}
$$

$$
z=z(x, y)
$$

Apply the same ideas:

$$
\begin{aligned}
& x y^{3}+\sec (y+z)-z x^{2}=1 \\
& \frac{\partial}{\partial x}\left(x y^{3}+\sec (y+z) ;-z x^{2}\right)=\frac{\partial}{\partial x}(1) \\
& y^{3}+\sec (y+z) \tan (y+z)\left(\frac{\partial z}{\partial x}\right) \\
& -\left(\frac{\partial z}{\partial x} x^{2}+z(2 x)\right)=0
\end{aligned}
$$

$$
\begin{aligned}
\frac{\partial z}{\partial x} & \left(\sec (y+z) \tan (y+z)-x^{2}\right) \\
& =y^{3}+2 x z \\
\frac{\partial z}{\partial x} & =\frac{-y^{3}+2 x z}{\sec (y+z) \tan (y+z)-x^{2}}
\end{aligned}
$$

we can similarly find $\frac{\partial z}{\partial y}$.

EX 5 If $y e^{-x}+\sin (x+z)+e^{z}=5$, find $\frac{\partial z}{\partial x}$ and $\frac{\partial z}{\partial y}$.
(1) $\frac{\partial z}{\partial x}$:
(y does not depend on x, but z does depend on x)

$$
\begin{gathered}
\frac{\partial}{\partial x}\left(y e^{-x}+\sin (x+z)+e^{z}\right)=\frac{\partial}{\partial x}(s) \\
-y e^{-x}+\cos (x+z)\left(1+\frac{\partial z}{\partial x}\right)+e^{z}\left(\frac{\partial z}{\partial x}\right)=0 \\
\frac{\partial z}{\partial x}\left(\cos (x+z)+e^{z}\right)=y e^{-x}-\cos (x+z) \\
\frac{\partial z}{\partial x}=\frac{y e^{-x}-\cos (x+z)}{\cos (x+z)+e^{z}}
\end{gathered}
$$

(2) $\frac{\partial z}{\partial y}$: (x is not dependent on y, but z does depend on y)

$$
\begin{gathered}
\frac{\partial}{\partial y}\left(y e^{-x}+\sin (x+z)+e^{z}\right)=\frac{\partial}{\partial y}(5) \\
e^{-x}+\cos (x+z)\left(\frac{\partial z}{\partial y}\right)+e^{z} \frac{\partial z}{\partial y}=0 \\
\frac{\partial z}{\partial y}\left(\cos (x+z)+e^{2}\right)=-e^{-x} \\
\frac{\partial z}{\partial y}=\frac{-e^{-x}}{\cos (x+z)+e^{2}}
\end{gathered}
$$

