

Directional Derivatives

Directional Derivatives

We know we can write $\frac{\partial f}{\partial x}=f_{x}(a, b)=\lim _{h \rightarrow 0} \frac{f(a+h, b)-f(a, b)}{h}$

$$
\frac{\partial f}{\partial y}=f_{y}(a, b)=\lim _{h \rightarrow 0} \frac{f(a, b+h)-f(a, b)}{h}
$$

The partial derivatives measure the rate of change of the function at a point in the direction of the x-axis or y-axis. What about the rates of change in the other directions?

Definition
For any unit vector, $\hat{u}=\left\langle u_{v} u_{y}\right\rangle$ let

$$
D_{u} f(a, b)=\lim _{h \rightarrow 0} \frac{f\left(a+h u_{x}, b+h u_{y}\right)-f(a, b)}{h}
$$

If this limit exists, this is called the directional derivative of f at the point (a, b) in the direction of \hat{u}.
read "divectomal derivative of f at (a, b)
in the direction of \vec{u} "

Theorem
Let f be differentiable at the point (a, b). Then f has a directional derivative at (a, b) in the direction of $\hat{u} . \hat{u}=u_{x} \hat{i}+u_{y} \hat{j}$ and

$$
D_{\vec{i} \hat{j}}(a, b)=\hat{u} \cdot \nabla f(a, b) .
$$

this is used computationally

EX 1 Find the directional derivative of $f(x, y)$ at the point (a, b) in the direction of \vec{u}. (Note: $\overrightarrow{\mathrm{u}}$ may not be a unit vector.)
a) $f(x, y)=y^{2} \ln (x)$
$(a, b)=(1,4)$

$$
\vec{u}=\hat{i}-\hat{j} \quad\|\vec{u}\|=\sqrt{1^{2}+(-1)^{2}}=\sqrt{2}
$$ $\hat{u}=\langle 1 / \sqrt{2},-1 / \sqrt{2}\rangle$

$$
\begin{aligned}
& D_{\vec{u}} f(a, b)=\hat{u} \cdot \nabla f(a, b) \\
& \nabla f(x, y)=\left\langle f_{x}, f_{y}\right\rangle=\left\langle\frac{y^{2}}{x}, 2 y \ln x\right\rangle \\
& \nabla f(a, b)=\nabla f(1, y)=\left\langle\frac{y^{2}}{1}, 2(4) \ln \mid\right\rangle=\langle 16,0\rangle \\
& D_{\hat{u}} f(a, b)=\langle 1 / \sqrt{2},-1 / \sqrt{2}\rangle \cdot\langle\mid 6,0\rangle=\frac{16}{\sqrt{2}}=8 \sqrt{2}
\end{aligned}
$$

b) $f(x, y)=2 x^{2} \sin y+x y$
$(a, b)=(1, \pi / 2)$ $\vec{u}=2 \hat{\imath}+\hat{j}$

$$
\begin{aligned}
& \nabla f(x, y)=\left\langle 4 x \sin y+y, 2 x^{2} \cos y+x\right\rangle \\
& \nabla f(1, \pi / 2)=\langle 4+\pi / 2,1\rangle \\
& \begin{aligned}
\nabla \vec{u} \| & =\sqrt{2^{2}+1^{2}}=\sqrt{5} \Rightarrow \hat{u}=\langle 2 / \sqrt{5}, 1 / \sqrt{5}\rangle \\
D_{\vec{u}} f(1, \pi / 2) & =\langle 4+\pi / 2,1\rangle \cdot\langle 2 / \sqrt{5}, 1 / \sqrt{5}\rangle \\
& =\frac{8}{\sqrt{5}}+\frac{\pi}{\sqrt{5}}+\frac{1}{\sqrt{5}}=\frac{9+\pi}{\sqrt{5}}
\end{aligned}
\end{aligned}
$$

Maximum Rate of Change
We know $D_{\bar{u}} f(a, b)=\hat{\boldsymbol{u}} \cdot \nabla f(a, b)$

$$
=\|\hat{u}\|\|\nabla f(a, b)\| \cos \theta=\|\nabla f(a, b)\| \cos \theta
$$

What angle, θ, maximizes $D_{i j} f(a, b)$?
its biggest when $\cos \theta=1 \Leftrightarrow \theta=0^{\circ}$
\Rightarrow largest when \vec{u} is in the dejection of $D f(a, b)$.

Theorem

The function, $z=f(x, y)$, increases most rapidly at (a, b) in the direction of the gradient (with rate $\|\nabla f(a, b)\|$) and decreases most rapidly in the opposite direction (with rate $-\|\nabla f(a, b)\|$).

EX 2 For $z=f(x, y)=x^{2}+y^{2}$, interpret gradient vector.

EX 3 Find a vector indicating the direction of most rapid increase of $f(x, y)$ at the given point. Then find the rate of change in that direction.
a) $f(x, y)=e^{y} \sin x$ at $(a, b)=(5 \pi / 6,0)$.

$$
\begin{aligned}
& \nabla f(x, y)=\left\langle e^{y} \cos x, e^{y} \sin x\right\rangle \\
& \nabla f(5 \pi / 6,0)=\langle\cos (5 \pi / 6), \sin (5 \pi / 6)\rangle=\left\langle-\frac{\sqrt{3}}{2}, \frac{1}{2}\right\rangle
\end{aligned}
$$

rate of change $=\|\nabla f(a, b)\|=\sqrt{(-\sqrt{3} / 2)^{2}+(1 / 2)^{2}}=\sqrt{1}=1$
b) $f(x, y)=x^{2} y-2 /(x y) \quad$ at $(a, b)=(1,1)$

$$
\begin{aligned}
f(x, y) & =x^{2} y-\frac{2}{x y} \\
\nabla f(x, y) & =\left\langle 2 x y-\frac{2}{y}\left(\frac{-1}{x^{2}}\right), x^{2}-\frac{2}{x}\left(\frac{-1}{y^{2}}\right)\right\rangle \\
& =\left\langle 2 x y+\frac{2}{y x^{2}}, x^{2}+\frac{2}{x y^{2}}\right\rangle
\end{aligned}
$$

$\nabla f(1,1)=\langle 4,3\rangle$ directs of steepest ascent

$$
\|\nabla F(1,1)\|=\sqrt{16+9}=5
$$ (or max change)

EX 4 The temperature at (x, y, z) of a ball centered at the origin is

$$
T=100 e^{-\left(x^{2}+y^{2}+z^{2}\right)}
$$

Show that the direction of greatest decrease in temperature is always a vector pointing away from the origin.

$$
\left.\begin{array}{rl}
\nabla T & (x, y, z)=\left\langle T_{x}, T_{y}, T_{z}\right\rangle \\
= & \left\langle 100 e^{-\left(x^{2}+y^{2}+z^{2}\right)}(-2 x), 100 e^{-\left(x^{2}+y^{2}+z^{2}\right)}(-2 y),\right. \\
= & -200 e^{-\left(x^{2}+y^{2}+z^{2}\right)}\left\langle 00 e^{-\left(x^{2}+y^{2}+z^{2}\right)}(-2 z)\right\rangle
\end{array}\langle x, z\rangle\right)
$$

\Rightarrow greatest decrease of T happens in this direction

$$
200 e^{-\left(x^{2}+y^{2}+z^{2}\right)}\langle x, y, z\rangle
$$

a vector pouting away from origin would be $\langle x, y, z\rangle$ or any positive constant multiple.

One extra (cool) fact
Theorem
The gradient of $z=f(x, y) \quad(w=f(x, y, z))$ at point P is perpendicular to the level curve (surface) of f through P.

EX 5 Graph gradient vectors and level curves for

$$
z=f(x, y)=\frac{x^{2}}{9}+\frac{y^{2}}{25} . \quad \nabla f=\left\langle\frac{2 x}{9}, \frac{2 y}{25}\right\rangle
$$

each level curve is an ellipse. (note. $z \geq 0$)

$$
\begin{aligned}
& \nabla f(3,0)=\left\langle\frac{6}{9}, 0\right\rangle \\
& \nabla f(0,5)=\left\langle 0, \frac{2}{5}\right\rangle
\end{aligned}
$$

