

Directional Derivatives

We know we can write
$$\frac{\partial f}{\partial x} = f_x(a,b) = \lim_{h \to 0} \frac{f(a+h,b) - f(a,b)}{h}$$
$$\frac{\partial f}{\partial y} = f_y(a,b) = \lim_{h \to 0} \frac{f(a,b+h) - f(a,b)}{h}$$

The partial derivatives measure the rate of change of the function at a point <u>in the direction</u> of the *x*-axis or *y*-axis. What about the rates of change in the other directions?

Definition

For any unit vector, $\hat{u} = \langle u_x, u_y \rangle$ let

$$D_{u}f(a,b) = \lim_{h \to 0} \frac{f(a + hu_{x}, b + hu_{y}) - f(a,b)}{h}$$

If this limit exists, this is called the directional derivative of f at the point (a,b) in the direction of \hat{u} .
Wead "directional derivative of f at $(a_{j}b)$ in the direction of \hat{u} " $f(a,b) = \hat{u} \cdot \nabla f(a,b)$.
Theorem
Let f be differentiable at the point (a,b) . Then f has a directional derivative at (a,b) in the direction of \hat{u} . $\hat{u} = u_{x}\hat{i} + u_{y}\hat{j}$ and $D_{u}f(a,b) = \hat{u} \cdot \nabla f(a,b)$.

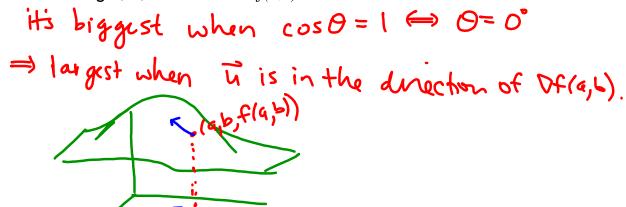
EX 1 Find the directional derivative of
$$f(x,y)$$
 at the point (a,b) in the direction of \vec{u} . (Note: \vec{u} may not be a unit vector.)
a) $f(x,y) = y^2 ln(x)$ $(a,b) = (1,4)$ $\vec{u} = \begin{pmatrix} 1 & -j \\ 0 & -j \end{pmatrix}$ $\|\vec{u}\|_{1}^{2} = \sqrt{1/2} - \sqrt{1/2}$
 $\int_{U}^{2} + \langle (a_{1} - b) = \hat{u} - \nabla f(a_{1} - b)$
 $\nabla f(x,y) = \langle f_{x}, f_{y} \rangle = \langle f_{x}^{2}, j^{2}y + k_{x} \rangle$
 $\nabla f(a_{1} - b) = \nabla f(1, y) = \langle f_{x}^{2}, j^{2}y + k_{x} \rangle$
 $\nabla f(a_{1} - b) = \nabla f(1, y) = \langle f_{x}^{2}, j^{2}y + k_{x} \rangle$
 $\nabla f(a_{1} - b) = \langle f(x, y) = \langle f(x, y) - f(x, y) - f(x, y) = \langle f(x, y) - f(x, y) - f(x, y) = \langle f(x, y) - f(x, y) - f(x, y) = \langle f(x, y) - f(x, y) - f(x, y) = \langle f(x, y) - f(x, y) - f(x, y) = \langle f(x, y) - f(x, y) - f(x, y) = \langle f(x, y) - f(x, y) - f(x, y) = \langle f(x, y) - f(x, y) - f(x, y) = \langle f(x, y) - f(x, y) - f(x, y) - f(x, y) = \langle f(x, y) - f(x, y) - f(x, y) = \langle f(x, y) - f(x, y) - f(x, y) = \langle f(x, y) - f(x, y) - f(x, y) = \langle f(x, y) - f(x, y) - f(x, y) = \langle f(x, y) - f(x, y) - f(x, y) = \langle f(x, y) - f(x, y) - f(x, y) = \langle f(x, y) - f(x, y) - f(x, y) = \langle f(x, y) - f(x, y) - f(x, y) = \langle f(x, y) - f(x, y) - f(x, y) = \langle f(x, y) - f(x, y) - f(x, y) = \langle f(x, y) - f(x, y) - f(x, y) - f(x, y) = \langle f(x, y) - f(x, y) - f(x, y) = \langle f(x, y) - f(x, y) - f(x, y) = \langle f(x, y) - f(x, y) - f(x, y) = \langle f(x, y) - f(x, y) - f(x, y) = \langle f(x, y) - f(x, y) - f(x, y) = \langle f(x, y) - f(x, y) - f(x, y) = \langle f(x, y) - f(x, y) - f(x, y) = \langle f(x, y) - f(x, y) - f(x, y) = \langle f(x, y) - f(x, y) - f(x, y) = \langle f(x, y) - f(x, y) - f(x, y) = \langle f(x, y) - f(x, y) - f(x, y) = \langle f(x, y) - f(x, y) - f(x, y) = \langle f(x, y) - f(x, y) - f(x, y) = \langle f(x, y) - f(x, y) - f(x, y) = \langle f(x, y) - f(x, y) - f(x, y) = \langle f(x, y) - f(x, y) - f(x, y) = \langle f(x, y) - f(x, y) - f(x, y) = \langle f(x, y) - f(x, y$

Maximum Rate of Change

We know
$$D_{\bar{u}}f(a,b) = \hat{u} \cdot \nabla f(a,b)$$

= $\|\hat{u}\| \|\nabla f(a,b)\| \cos \theta = \|\nabla f(a,b)\| \cos \theta$

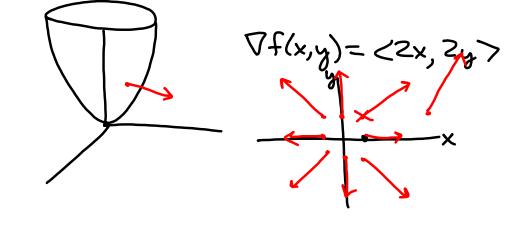
What angle, θ , maximizes $D_{ij}f(a,b)$?



<u>Theorem</u>

The function, z = f(x,y), increases most rapidly at (a,b) in the direction of the gradient (with rate $\|\nabla f(a,b)\|$) and decreases most rapidly in the opposite direction (with rate $-\|\nabla f(a,b)\|$).

EX 2 For $z = f(x,y) = x^2 + y^2$, interpret gradient vector.



EX 3 Find a vector indicating the direction of most rapid increase
of
$$f(x,y)$$
 at the given point. Then find the rate of change in
that direction.
a) $f(x,y) = e^{y} \sin x$ at $(a,b) = (5\pi/6,0)$.
 $\nabla f(x,y) = e^{y} \cos x$, $z^{3} \sin x^{3}$
 $\nabla f((s_{1}^{4}, y)) = \langle e^{y} \cos x, z^{3} \sin x^{3} \rangle$
 $\nabla f((s_{1}^{4}, y)) = \langle e^{y} \cos x, z^{3} \sin x^{3} \rangle$
 $\nabla f((s_{1}^{4}, y)) = \langle e^{y} \cos x, z^{3} \sin x^{3} \rangle$
 $\nabla f(s_{1}^{4}, y) = \langle e^{y} \cos x, z^{3} \sin x^{3} \rangle$
 $\nabla f(x,y) = x^{2}y - 2(xy)$ at $(a,b) = (1,1)$
 $f(x,y) = x^{2}y - 2(xy)$ at $(a,b) = (1,1)$
 $f(x,y) = x^{2}y - \frac{2}{xy}$
 $\nabla f(x,y) = x^{2}y - \frac{2}{xy} (\frac{-1}{x^{2}}), x^{2} - \frac{2}{x} (\frac{-1}{y^{2}}) \rangle$
 $= \langle 2xy + \frac{2}{yx}, y^{2} + \frac{2}{xy^{2}} \rangle$
 $\nabla f(1,1) = \langle 4, 3 \rangle$ dive chools steepest ascent
 $(w max change)$
 $\| \nabla f(1,1) \|_{1}^{2} = \sqrt{\|b+9\|} = 5$

EX 4 The temperature at (x, y, z) of a ball centered at the origin is $T = 100e^{-(x^2 + y^2 + z^2)}$

Show that the direction of greatest decrease in temperature is always a vector pointing away from the origin.

 $\nabla T(x,y,z) = \langle T_x, T_y, T_z \rangle$ $= < 100 e^{-(x^{2}+y^{2}+z^{2})} (-2x), 100 e^{-(x^{2}+y^{2}+z^{$ +*`)(-?y), $= -200e^{-(x^{2}+y^{2}+z^{2})} < x, y, z >$ ⇒ greatest decrease of T happens in this direction 200 e (x2+y2+2) < x, y, 2> a vector pating away from origin would be <x,y,z> or any positive constant multiple.

