

Differentiability/Gradient

Differentiability

For a function of one variable, the derivative gives us the slope of the tangent line, and a function of one variable is differentiable if the derivative exists. For a function of two variables, the function is differentiable at a point if it has a tangent plane at that point. But existence of the first partial derivatives is not quite enough, unlike the one-variable case.

Theorem

If $f(x, y)$ has continuous partial derivatives $f_{x}(x, y)$ and $f_{y}(x, y)$ on a disk D whose interior contains (a, b), then $f(x, y)$ is differentiable at (a, b).

Theorem
If f is differentiable at (a, b), then f is continuous at (a, b).

Gradient of f

$$
\nabla f(p)=\nabla f(a, b)=\left\langle f_{x}(a, b), f_{y}(a, b)\right\rangle=f_{x}(a, b) \hat{i}+f_{y}(a, b) \hat{j}
$$

for a function, $z=f(x, y)$.
(Note: This gradient lives in 2-D space, but it is the gradient of a function whose graph is 3-D.)
gradient is a vector!!

Properties of Gradient Operator
p is the input point (a, b).

$$
\begin{aligned}
& {\left[\begin{array}{l}
\nabla[f(p)+g(p)]=\nabla f(p)+\nabla g(p) \\
\nabla[\alpha f(p)=\alpha \nabla f(p), \alpha \in \Re
\end{array}\right] \text { gradient is a linear }} \\
& \nabla[f(p) g(p)]=f(p) \nabla g(p)+\nabla f(p) g(p) \quad \text { operator } \\
& \text { ("product rule") }
\end{aligned}
$$

EX 1 Find the gradient of f.
a) $f(x, y)=x^{3} y-y^{3}$

$$
\nabla f=f_{x} \hat{\imath}+f_{y} \hat{\jmath}=\left(3 x^{2} y\right) \hat{\imath}+\left(x^{3}-3 y^{2}\right) \hat{\jmath}
$$

b) $f(x, y)=\sin ^{3}\left(x^{2} y\right)$

$$
\begin{aligned}
\nabla f= & 3 \sin ^{2}\left(x^{2} y\right)\left(\cos \left(x^{2} y\right)\right)(2 x y) \hat{\imath} \\
& +3 \sin ^{2}\left(x^{2} y\right)\left(\cos \left(x^{2} y\right)\right)\left(x^{2}\right) \hat{\jmath}
\end{aligned}
$$

c) $f(x, y, z)=x z \ln (x+y+z)$

$$
\begin{aligned}
\nabla f= & f_{x} \hat{\imath}+f_{\jmath} \hat{\jmath}+f_{z} \hat{k} \\
= & \left(z \ln (x+y+z)+\frac{x z(1)}{x+y+z}\right) \hat{\imath} \\
& +\left(\frac{x z(1)}{x+y+z}\right) \hat{r}+\left(x \ln (x+y+z)+\frac{x z(1)}{x+y+z}\right) \hat{k}
\end{aligned}
$$

ign of tangent line
to curve $y=f(x)$
($\ln 2-d$)

Surfaces in 3-D

find \vec{u} and \vec{v} (vectors in the tangent plane)

$$
\Rightarrow \vec{n}=\vec{u} \times \vec{v}
$$

$$
\vec{u}=\text { no" } y \text {-movement" }
$$

$$
=\left\langle 1,0, f_{x}(a, b)\right\rangle
$$

$$
\bar{v}=\text { no" } x \text {-movement" }
$$

$$
=\left\langle 0,1, f_{y}(a, b)\right\rangle
$$

$$
\vec{n}=\vec{u} \times \vec{v}
$$

$$
=\left|\begin{array}{lll}
\hat{\imath} & \hat{\jmath} & \hat{k} \\
1 & 0 & f_{x} \\
0 & 1 & f_{y}
\end{array}\right|
$$

$$
=\hat{\imath}\left(-f_{x}(a, b)\right)-\hat{\jmath}\left(f_{y}(a, b)\right)
$$

$$
+\hat{k}(1)
$$

$$
\vec{n}=\left\langle-f_{x}(a, b),-f_{y}(a, b), 1\right\rangle
$$

\Rightarrow egn of plane w/ \vec{n} normal vector and through pt $(a, b, f(a, b))$

$$
\begin{aligned}
& \left\langle-f_{x}(a, b),-f_{y}(a, b), 1\right\rangle \cdot\langle x-a, y-b, z-f(a, b)\rangle=0 \\
& * \quad-f_{x}(a, b)(x-a)-f_{y}(a, b)(y-b)+z-f(a, b)=0 \\
& z=f(a, b)+\left\langle f_{x}(a, b), f_{y}(a, b)\right\rangle \cdot\langle x-a, y-b\rangle \\
& \text { or } \quad z=f(a, b)+\nabla f(a, b) \cdot\langle x-a, y-b\rangle
\end{aligned}
$$

eqn of tangent plane to surface $z=f(x, y)$ at (a, b) input pt (in 3-d)

EX 2 For $f(x, y)=x^{3} y+3 x y^{2}$, find the equation of the tangent plane at $(a, b)=(2,-2)$.

$$
\begin{gathered}
\left\langle f_{x}(a, b), f_{y}(a, b)\right\rangle \cdot\langle x-a, y-b\rangle=z-f(a, b) \\
\nabla f(a, b) \cdot\langle x-a, y-b\rangle=z-f(a, b) \\
z=f(a, b)+\nabla f(a, b) \cdot\langle x-a, y-b\rangle \text { tangent } \\
f_{x}=3 x^{2} y+3 y^{2}, \quad f_{y}=x^{3}+6 x y \\
f(a, b)=f(2,-2)=8(-2)+3(2)(y)=8
\end{gathered}
$$

tangent plane: $z=8+\left\langle 3\left(2^{2}\right)(-2)+3(-2)^{2}, 2^{3}+6(2)(-2)\right\rangle$

$$
\cdot\langle x-2, y+2\rangle
$$

$$
\begin{aligned}
& z=8+\langle-12,-16\rangle \cdot\langle x-2, y+2\rangle \\
& z=8+-12(x-2)-16(y+2) \\
& z=-12 x-16 y \\
& 12 x+16 y+z=0
\end{aligned}
$$

Ex 3 Find the equation of the tangent "hyperplane" to $f(x, y, z)=\omega$ at the point (a, b, c).

$$
f(x, y, z)=x y z+x^{2} \quad(a, b, c)=(2,0,-3)
$$

$$
\begin{aligned}
& w=f(a, b, c)+\nabla f(a, b, c) \cdot\langle x-a, y-b, z-c\rangle \\
& f(a, b, c)=f(2,0,-3)=4 \\
& f_{x}=y z+2 x, f_{y}=x z, f_{z}=x y \\
& f_{x}(2,0,-3)=4, f_{y}(3,0,-3)=-6, f_{z}(2,0,-3)=0 \\
& \quad \Rightarrow \nabla f(2,0,-3)=\langle 4,-6,0\rangle
\end{aligned}
$$

tangent hyperplane:

$$
\begin{aligned}
& w=4+\langle 4,-6,0\rangle \cdot\langle x-2, y, z+3\rangle \\
& w=4+4(x-2)-6(y)+0(z+3) \\
& w=4 x-6 y-4 \\
& 4 x-6 y-w=4
\end{aligned}
$$

Ex 4 Find all domain points (x, y) at which the tangent plane to the graph of $z=x^{3}$ is horizontal.

$$
z=f(x, y)=x^{3}
$$

tangent plane horizontal
\Leftrightarrow normal of tangent plane $\ll 0,0,1\rangle$
find the tangent plane to $z=f(x, y)$ at (a, b)

$$
\left.\begin{aligned}
& z=a^{3}+\nabla f(a, b) \cdot\langle x-a, y-b\rangle \\
& z=a^{3}+\left\langle 3 a^{2}, 0\right\rangle \cdot\langle x-a, y-b\rangle \\
& z=a^{3}+3 a^{2}(x-a)+0 \\
& z=3 a^{2} x-3 a^{3}+a^{3} \\
& 3 a^{2} x-z=2 a^{3}
\end{aligned} \right\rvert\, \begin{aligned}
& f_{x}=3 x^{2} \\
& f_{y}=0
\end{aligned}
$$

\Rightarrow normal vector is $\left\langle 3 a^{2}, 0,-1\right\rangle$
force $\left\langle 3 a^{2}, 0,-1\right\rangle=c\langle 0,0,1\rangle$ \Rightarrow let $c=-1,-1=-1 \checkmark$ (z-component)

$$
\begin{aligned}
& 3 a^{2}=0 \\
& \Rightarrow a=0
\end{aligned}
$$

\Rightarrow tangent plane is honzontal whenurer $x=0$ and if $x=0, f(x, y)=x^{3}=0$ is true.
at pts of surface on y-axis, tangent plane is horizontal.

