

a

b

Consider the same surface cut by two different planes.
In a it is cut by $y=y_{0}$,
in \mathbf{b} it is cut by $x=x_{0}$.
The curve of intersection in a goes through plane RPQ and in \mathbf{b} through plane MPL.

Each of those curves has a tangent line associated with it at point P.
Each tangent line has a steepness associated with it and that should make us think about what?

Since our function is now a function of two variables (rather than one), we can only take the partial derivative with respect to one of the variables.

$$
\begin{aligned}
& f_{x}\left(x_{0}, y_{0}\right)=\lim _{\Delta x \rightarrow 0} \frac{f\left(x_{0}+\Delta x, y_{0}\right)-f\left(x_{0}, y_{0}\right)}{\Delta x} \\
& f_{y}\left(x_{0}, y_{0}\right)=\lim _{\Delta y \rightarrow 0} \frac{f\left(x_{0}, y_{0}+\Delta y\right)-f\left(x_{0}, y_{0}\right)}{\Delta y}
\end{aligned}
$$

EX 1 Find $f_{x}(0,3)$ and $f_{y}(0,3)$ if $f(x, y)=3 x^{2} y^{2}+4 y^{3}-5$.

Notation

If $z=f(x, y)$, then

$$
f_{x}(x, y)=\frac{\partial z}{\partial x}=\frac{\partial f(x, y)}{\partial x} \quad \text { partial derivative of } f \text { with respect to } x
$$

$$
f_{y}(x, y)=\frac{\partial z}{\partial y}=\frac{\partial f(x, y)}{\partial y} \quad \text { partial derivative of } f \text { with respect to } y
$$

EX 2 If $z=x^{2} y+\cos (x y)-2$, find $\frac{\partial z}{\partial x}$ and $\frac{\partial z}{\partial y}$

EX 3 Find the 'slope' of the tangent line to the curve of intersection
of this surface $3 z=\sqrt{36-9 x^{2}-4 y^{2}}$
and the plane $x=1$
at the point $(1,-2, \sqrt{11} / 3)$.
The 'slope' here refers to the change in z over the change in y.

EX 4 The temperature in degrees celsius on a metal plate in the $x y$-plane is given by $T(x, y)=4+2 x^{2}+y^{3}$. What is the rate of change of temperature with respect to distance (in feet) if we start moving from $(3,2)$ in the direction of the y-axis?

Higher Order Partial Derivatives

$$
\begin{array}{ll}
f_{x x}=\frac{\partial}{\partial x}\left(\frac{\partial f}{\partial x}\right)=\frac{\partial^{2} f}{\partial x^{2}} & f_{y y}=\frac{\partial}{\partial y}\left(\frac{\partial f}{\partial y}\right)=\frac{\partial^{2} f}{\partial y^{2}} \\
f_{x y}=\left(f_{x}\right)_{y}=\frac{\partial}{\partial y}\left(\frac{\partial f}{\partial x}\right)=\frac{\partial^{2} f}{\partial y \partial x} & f_{y x}=\left(f_{y}\right)_{x}=\frac{\partial}{\partial x}\left(\frac{\partial f}{\partial y}\right)=\frac{\partial^{2} f}{\partial x \partial y}
\end{array}
$$

EX 5 Find all four second partial derivatives for $f(x, y)=\left(x^{3}+y^{2}\right)^{5}$.

EX 6 Find all four second partial derivatives for $f(x, y)=\tan ^{-1}(x y)$.

EX 7 For $f(x, y, z)=x y^{2}-\frac{2 x}{y z}+3 z^{3} x$, find $f_{x,} f_{y,}, f_{z}, f_{z z}$ and $f_{y y y}$.

