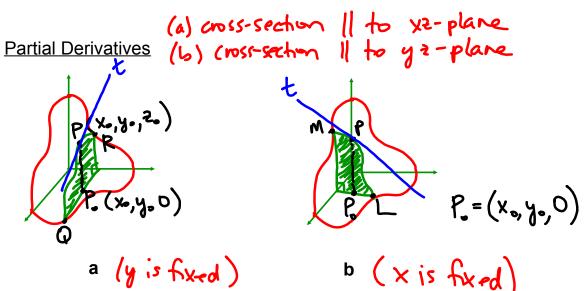


Partial Derivatives

$$\frac{\partial}{\partial x} \left(\frac{\partial^2 f}{\partial x^2} \right) = \frac{\partial^3 f}{\partial x^3} = f_{xxx}$$
$$\frac{\partial}{\partial y} \left(\frac{\partial^2 f}{\partial x^2} \right) = \frac{\partial^3 f}{\partial y \partial x^2} = f_{yxx}$$
$$\frac{\partial}{\partial x} \left(\frac{\partial^2 f}{\partial x \partial y} \right) = \frac{\partial^3 f}{\partial x^2 \partial y} = f_{xxy}$$



Consider the same surface cut by two different planes.

In **a** it is cut by $y = y_0$,

in **b** it is cut by $x = x_0$.

The curve of intersection in **a** goes through plane RPQ and in **b** through plane MPL.

Each of those curves has a tangent line associated with it at point P.

Each tangent line has a steepness associated with it and that should make us think about what?

Since our function is now a function of two variables (rather than one), we can only take the <u>partial derivative</u> with respect to one of the variables.

()
$$f_x(x_0, y_0) = \lim_{\Delta x \to 0} \frac{f(x_0 + \Delta x, y_0) - f(x_0, y_0)}{\Delta x}$$
 partial demative
yrematics constant of f with
respect to x "
(2) $f_y(x_0, y_0) = \lim_{\Delta y \to 0} \frac{f(x_0, y_0 + \Delta y) - f(x_0, y_0)}{\Delta y}$ (notation: wrt
X remains constant = with respect to)
Note: to find f_x, treat y as a constant.
to find f_y, " x " " "

EX 1 Find $f_x(0,3)$ and $f_y(0,3)$ if $f(x,y)=3x^2y^2 + 4y^3 - 5$.

$$f_{x}(x,y) = 3y^{2}(2x) + 0 - 0 = 6xy^{2}$$
$$f_{y}(x,y) = 3x^{2}(2y) + 12y^{2} - 0 = 6x^{2}y + 12y^{2}$$

$$f_{x}(0,3) = (0)(3^{2}) = 0$$

$$f_{y}(0,3) = (0)(3^{2}) + 12(3^{2}) = 12(9) = 108$$

Notation

If z = f(x,y), then

$$f_x(x, y) = \frac{\partial z}{\partial x} = \frac{\partial f(x, y)}{\partial x}$$
 partial derivative of *f* with respect to *x*

$$f_y(x, y) = \frac{\partial z}{\partial y} = \frac{\partial f(x, y)}{\partial y}$$
 partial derivative of f with respect to y
EX 2 If $z = x^2y + cos(xy) - 2$, find $\frac{\partial z}{\partial x}$ and $\frac{\partial z}{\partial y}$.

$$\begin{aligned} z &= f(x,y) = x^2 y + \cos(xy) - 2 \\ \frac{\partial z}{\partial x} &= f_x = y(2x) + -\sin(xy)(y) \\ &= 2xy - y \sin(xy) \\ \frac{\partial z}{\partial y} &= f_y = x^2(1) + -\sin(xy)(x) \\ &= x^2 - x \sin(xy) \end{aligned}$$

EX 3 Find the 'slope' of the tangent line to the curve of intersection of this surface $3z = \sqrt{36 - 9x^2 - 4y^2}$ (c(lipsoid) to half and the plane x = 1 (1) to y=plane) at the point $(1, -2, \sqrt{11}/3)$.

The 'slope' here refers to the change in *z* over the change in *y*.

the curve of intersection: looks like an

$$z = \frac{1}{3} \sqrt{36 - 9x^2 - 4y^2}$$
 ellipse (in a plane
 $\frac{\partial z}{\partial y} = \frac{1}{3} \left(\frac{1}{2}\right) (36 - 9x^2 - 4y^2)^{1/2} (-8y)$
 $= \frac{-4y}{3\sqrt{36 - 9x^2 - 4y^2}}$
at $(1, -2, \sqrt{11}/3)$
 $\frac{\partial z}{\partial y} \Big|_{(1, -2, \sqrt{11}/3)} = \frac{-4(-2)}{3\sqrt{36 - 9(1) - 4(4)}} = \frac{8}{3\sqrt{11}}$

EX 4 The temperature in degrees celsius on a metal plate in the *xy*-plane is given by $T(x,y) = 4 + 2x^2 + y^3$. What is the rate of change of temperature with respect to distance (in feet) if we start moving from (3,2) in the direction of the y-axis?

went	<u>76</u> 91	Cis H	er xc) <u>at</u> ?	
	ant <u>d</u>			(x rem	ains constant)
<u>di</u>	ہ = 0 +	14 0+3y	= 3y2		
, , , , , , , , , , , , , , , , , , ,	=) <u>}</u>	$\frac{T}{2}\Big _{(3,2)} =$	<u>-</u> 3(2 ²)=	12°C/ft	

Higher Order Partial Derivatives

$$f_{xx} = \frac{\partial}{\partial x} \left(\frac{\partial f}{\partial x} \right) = \frac{\partial^{2} f}{\partial x^{2}} \qquad f_{yy} = \frac{\partial}{\partial y} \left(\frac{\partial f}{\partial y} \right) = \frac{\partial^{2} f}{\partial y^{2}}$$

$$f_{yy} = (f_{x})_{y} = \frac{\partial}{\partial y} \left(\frac{\partial f}{\partial x} \right) = \frac{\partial^{2} f}{\partial y \partial x} \qquad f_{yx} = (f_{y})_{x} = \frac{\partial}{\partial x} \left(\frac{\partial f}{\partial y} \right) = \frac{\partial^{2} f}{\partial x \partial y}$$
(notice the order of x and y)
$$EX 5 \text{ Find all four second partial derivatives for } f(x,y) = (x^{3} + y^{2})^{5}.$$

$$f_{x} = 5 (x^{3} + y^{2})^{4} (3x^{3}) \qquad f_{y} = 5 (x^{3} + y^{3})^{4} (2y)$$

$$= 15x^{2} (x^{3} + y^{2})^{3} (2y) \qquad f_{y} = 10y (x^{3} + y^{2})^{3} (3x^{2}) \qquad = 10y (x^{3} + y^{2})^{3} (3x^{2})$$

$$= 120x^{2}y (x^{3} + y^{2})^{3} (y^{3} + y^{2})^{3} (y^{3} + y^{2})^{3} (3x^{2}) \qquad = 10y (x^{3} + y^{2})^{3} (y^{2} + f_{x}^{2})^{3}$$

$$f_{xx} = 30x (x^{3} + y^{3})^{4} + 15x^{2} (4) (x^{3} + y^{2} + 6x^{3})^{2} = 30x (x^{3} + y^{2})^{3} (y^{2} + f_{x}^{3})^{4}$$

$$f_{yy} = 10 (x^{3} + y^{3})^{4} + 10y (4) (x^{3} + y^{3})^{4} (2y) \qquad = 10(x^{3} + y^{3})^{4} (y^{3} + y^{3})^{4} (2y)$$

$$= 10(x^{3} + y^{3})^{4} (x^{3} + y^{2} + 6y^{2}) = 10(x^{3} + y^{3})^{3} (x^{3} + 9y^{4})^{4}$$

EX 6 Find all four second partial derivatives for $f(x,y) = tan^{-1}(xy)$.

$$f_{x} = \frac{1}{1 + (xy)^{2}} (y) = \frac{y}{1 + x^{2}y^{2}} \quad \text{and} \quad y \in (1 + x^{2}y^{2})^{-1}$$

$$f_{y} = \frac{1}{1 + (xy)^{2}} (x) = \frac{x}{1 + x^{2}y^{2}}$$

$$f_{yx} = \frac{-y}{(1 + x^{2}y^{2})^{2}} (2xy^{2}) = \frac{-2xy^{3}}{(1 + x^{2}y^{2})^{2}}$$

$$f_{yy} = \frac{-x}{(1 + x^{2}y^{2})^{2}} (2x^{2}y) = \frac{-2x^{3}y}{(1 + x^{2}y^{2})^{2}}$$

$$f_{xy} = \frac{(1 + x^{2}y^{2})(1) - y(2x^{2}y)}{(1 + x^{2}y^{2})^{2}} = \frac{1 + x^{2}y^{2} - 2x^{2}y^{2}}{(1 + x^{2}y^{2})^{2}}$$

$$f_{yx} = \frac{(1 + x^{2}y^{2})(1) - y(2x^{2}y)}{(1 + x^{2}y^{2})^{2}} = \frac{1 - x^{2}y^{2}}{(1 + x^{2}y^{2})^{2}}$$

$$f_{yx} = \frac{(1 + x^{2}y^{2})(1) - (2xy^{2})}{(1 + x^{2}y^{2})^{2}} = \frac{1 - x^{2}y^{2}}{(1 + x^{2}y^{2})^{2}}$$

$$f_{yx} = \frac{(1 + x^{2}y^{2})(1) - (2xy^{2})}{(1 + x^{2}y^{2})^{2}} = \frac{1 - x^{2}y^{2}}{(1 + x^{2}y^{2})^{2}}$$

$$f_{yx} = \frac{f_{xy}}{(1 + x^{2}y^{2})^{2}} \text{for all fins f that}$$

$$are "nice -enough"$$

EX 7 For
$$f(x, y, z) = xy^2 - \frac{2x}{yz} + 3z^3x$$
, find f_x, f_y, f_z, f_x and f_{yy} .
(this is a fn of 3 independent input
Variables; it lines in 4d space)
 $f_x = y^2 - \frac{2}{yz} + 3z^3$
 $f_y = 2xy - \frac{2x}{z}(\frac{-1}{y^2}) + 0 = 2xy + \frac{2x}{zy^2}$
 $f_z = 0 - \frac{2x}{y}(\frac{-1}{z^2}) + 9z^2x = \frac{2x}{yz^2} + 9z^2x$
 $f_{yz} = 0 - \frac{2}{y}(\frac{-1}{z^2}) + 9z^2x = \frac{2x}{yz^2} + 9z^2x$
 $f_{yz} = 0 - \frac{2}{y}(\frac{-1}{z^2}) + 9z^2$
 $f_{yy} = 2x + \frac{2x}{z}(\frac{-2}{y^2})$
 $= \frac{2}{yz^2} + 9z^2$