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Consider the same surface cut by two different planes.
Inaitis cut by y =y,
in b itis cut by x = xy.

The curve of intersection in a goes through plane RPQ and in b through
plane MPL.

Each of those curves has a tangent line associated with it at point P.

Each tangent line has a steepness associated with it and that should
make us think about what?
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Since our function is now a function of two variables (rather than one),
we can only take the partial derivative with respect to one of the

variables.
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EX 1 Find £(0,3) and £,(0,3) if f(x,y) =3x’y* + 4y - 5.
+» boy) = 39°(2)+ 0-0" (o)(%l
{2 (’9‘&) = §y’-(2.3) + |2l;~g = (9)8} 4\231
Fo(632)= ((0)(3Y)=
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Notation
If z =f(x,y), then

oz _of(x,y)

partial derivative of /' with respect to x
ox ox

f(x,y)=

f.(x,y)= a_Z = M partial derivative of f'with respect to y
Ty oy

EX 2 Ifz=x% + cos(xy) - 2, find % and oz
ox ay
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EX 3 Find the 'slope' of the tangent line to the curve of intersection

of this surface 3z = \/36 —9x* —4y” (c(\ i?-\'o-'al) ,\\,‘, \M-\‘Q'
and the plane x = I (” fo y2- plana ,
at the point (1,-2,V14) . ¢ >

The 'slope' here refers to the change in z over the change in y.
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EX 4 The temperature in degrees celsius on a metal plate in the
xy-plane is given by T(x,y) = 4 + 2x2 + y°. What is the rate of
change of temperature with respect to distance (in feet) if we
start moving from (3 2) in the direction of the y-axis?
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Higher Order Partial Derivatives
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EX 5 Find all four second partial derlvatlves for f(x,y) = (x* +y?)°.
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EX 6 Find all four second partial derivatives for f{x,y) = tan-'(xy).
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EX 7F
orf(x,y,z)=xy2—2—x+3z3x find
(‘Mﬁs | vz ,find £, fy, £ fr- and fyy.
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