

$\int u d v=u v-\int v d u$

Use the product rule for differentiation

$$
\frac{d}{d x}(u v)=u \frac{d v}{d x}+v \frac{d u}{d x}
$$

$$
\text { Integrate both sides } \quad \int \frac{d}{d x}(u v)=\int\left(u \frac{d v}{d x}+v \frac{d u}{d x}\right)
$$

Simplify Rearrange

$$
\begin{aligned}
u v & =\int u \frac{d v}{d x}+\int v \frac{d u}{d x} \\
\int u \frac{d v}{d x} & =u v-\int v \frac{d u}{d x}
\end{aligned}
$$

Integration by Parts

Look at the Product Rule for Differentiation.

$$
D_{x}[u(x) v(x)]=u^{\prime}(x) v(x)+v^{\prime}(x) u(x)
$$

EX $2 \int \arctan (5 x) d x$

EX $3 \int \frac{\ln x}{\sqrt{x}} d x$

Repeated Integration by Parts
EX $4 \int x^{3} e^{x} d x$

EX $5 \int e^{x} \cos x d x$

