

Integration by Parts

Look at the Product Rule for Differentiation.

$$
u=u(x), v=v(x)
$$

$$
\begin{aligned}
& D_{x}[u(x) v(x)]=u^{\prime}(x) v(x)+v^{\prime}(x) u(x) \\
& D_{x}[u v]=u^{\prime} v+v^{\prime} u \\
& P_{x}[u v]-u^{\prime} v=u v^{\prime} \\
& u v^{\prime}=D_{x}[u v]-u^{\prime} v \\
& \int u v^{\prime} d x=\int\left(D_{x}[u v]-u^{\prime} v\right) d x \\
& v^{\prime}=\frac{d v}{d x} \quad \int u\left(\frac{d v}{d x}\right) b x=\int \frac{d[u v]}{d x} d x-\int\left(\frac{d u}{d x}\right) v d x \\
& \int u d v=u v-\int v d u \int
\end{aligned}
$$

Integration by Pants formula
Notes: . u.dv must account for tho entire integrand

- this is like double u-sub.

$$
\int u d v=u v-\int v d u
$$

$$
\begin{aligned}
& \text { EX } \left.1 \int_{u}^{\int_{u}^{x \sin (2 x) d x}} \underset{d v}{u=x \quad v=\int_{=-\frac{1}{2} \cos (2 x)}^{\sin (2 x) d x}} \begin{array}{l}
d u=d x \quad d v=\sin (2 x) d x \\
=x\left(\frac{-1}{2} \cos (2 x)\right)-\int \frac{-1}{2} \cos (2 x) d x \\
=\frac{-1}{2} \times \cos (2 x)+\frac{1}{2} \int \cos (2 x) d x \\
=\frac{-1}{2} \times \cos (2 x)+\frac{1}{2}\left(\frac{1}{2}\right) \sin (2 x)+C \\
=-\frac{1}{2} \times \cos (2 x)+\frac{1}{4} \sin (2 x)+C
\end{array}\right) .
\end{aligned}
$$

Classic" Integration by Pants' Integrals
(1) a polynomial times
a sine or cosine fr
(2) exponential tines sine or cosine in
(3) polynomial times an exponential
(4) a fry that in don't know how to integrate but we do know how to differentiate

$$
\begin{aligned}
& \text { EX } 2 \int \frac{\arctan (5 x) d x}{u} d v \\
& u=\arctan (5 x) \quad v=x \\
& d u=\frac{1(5)}{1+(5 x)^{2}} d x \quad d v=d x \quad \rightarrow=x \arctan (5 x) \\
& d u=\frac{5}{1+25 x^{2}} d x \\
& -\int x\left(\frac{5}{1+25 x^{2}}\right) d x \\
& =x \arctan (5 x)-\int \frac{5 x}{1+25 x^{2}} d x \\
& \left.\left.\begin{array}{rl}
u & =1+25 x^{2} \\
d u & =50 x d x
\end{array} \right\rvert\,=x \arctan (5 x)-\frac{1}{10}\right) \frac{1}{u} d u \\
& \frac{1}{10} d u=5 x d x \quad=x \arctan (5 x)-\frac{1}{10} \ln |u|+C \\
& =x \arctan (5 x)-\frac{1}{10} \ln \left(1+25 x^{2}\right)+C
\end{aligned}
$$

EX $3 \int \frac{\ln x}{\sqrt{x}} d x$
(1)

Try

$$
\begin{aligned}
u=\ln x \\
\frac{d u=\frac{1}{x} d x}{\operatorname{does} n^{\prime} t \text { work }}
\end{aligned} \left\lvert\, \begin{array}{cc}
u=\ln x & v=2 x^{1 / 2} \\
d u=\frac{1}{x} d x \quad & d v=\frac{1}{\sqrt{x}} d x \\
& =2 x^{1 / 2} \ln x-\int 2 x^{1 / 2}\left(\frac{1}{x}\right) d x \\
& \left.=2 \sqrt{x} \ln x-2 \int x^{-1 / 2} d x\right) \\
& =2 \sqrt{x} \ln x-2\left(2 x^{1 / 2}\right)+C \\
& =2 \sqrt{x} \ln x-4 \sqrt{x}+C
\end{array}\right.
$$

$1(2)$ Try Int. by Pants
same process

Repeated Integration by Parts
for

$$
\begin{aligned}
& \frac{\text { EX } 4 \int_{u}^{\int_{u}^{3} e^{x} d x}}{3}=x^{3} e^{x}-3 \int_{u}^{\int_{2} \frac{x}{2}^{x} e^{x} d x} \\
& \begin{array}{ll|l}
u=x^{3} & v=e^{x} & u=x^{2} \\
d u=3 x^{2} d x & d v=e^{x} d x & d u=2 x d x
\end{array} \\
& \int x^{3} \cos x d x \\
& \text { or } \int x^{3} \sin x d x \\
& v=e^{x} \\
& d v=e^{x} d x \\
& \longrightarrow=x^{3} e^{x}-3\left(x^{2} e^{x}-2 \int_{x} x e^{x} d x\right) \\
& =x^{3} e^{x}-3 x^{2} e^{x}+6 \int x e^{x} d x \\
& u=x \quad v=e^{x} \\
& d u=d x \quad d v=e^{x} d x \\
& =x^{3} e^{x}-3 x^{2} e^{x}+6\left(x e^{x}-\int e^{x} d x\right) \\
& =x^{3} e^{x}-3 x^{2} e^{x}+6 x e^{x}-6 e^{x}+c
\end{aligned}
$$

$$
\begin{aligned}
& \text { EX 5 } \int \begin{array}{ll}
u=e^{x} e^{x} \cos x d x \\
d u=e^{x} d x & v=\sin x \\
=e^{x} \sin x-\int e^{x} \sin x d x=\cos x d x \\
u=e^{x} & v=-\cos x \\
d u=e^{x} d x & d v=e^{x} \sin x-\left(-e^{x} \cos x-\int-e^{x} \cos x-\int e^{x} \cos x d x\right)
\end{array}
\end{aligned}
$$

Here's what we have now

$$
\begin{aligned}
& \int \underbrace{\int e^{x} \cos x d x}=e^{x} \sin x+e^{x} \cos x-\int e^{x} \cos x d x \\
& +\int e^{x} \cos x d x \\
& \frac{\int e^{x} \cos x d x}{2} \\
& \sqrt[\int e^{x} \cos x d x]{2}=\frac{e^{x} \cos x d x=\frac{1}{2} e^{x}(\sin x+\cos x)+C}{2}
\end{aligned}
$$

Conclusion
Integration By Pants

$$
\int u d v=u v-\int v d u
$$

