

The graph of $y=\sin x$ does not pass the horizontal line test, so it has no inverse.

If we restrict the domain (to half a period), then we can talk about an inverse function.

Definition
$x=\sin ^{-1} y \Leftrightarrow y=\sin x$
$x=\cos ^{-1} y \Leftrightarrow y=\cos x$
notation $\quad \arccos (x)=\cos ^{-1} x$
$x \epsilon\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$ (the angle
$x \in[0, \pi]$
returned by arcsin h_{n} is between $-\frac{\pi}{2}$ and $\left.\frac{\pi}{2}\right)$

EX 1 Evaluate these without a calculator.
c) $\sin ^{-1}(\sin (3 \pi / 2))=\sin ^{-1}(-1)$

b) $\sin ^{-1}(1)=\frac{\pi}{2}$

$$
=-\frac{\pi}{2}
$$

d) $\cos ^{-1}(\cos (-\pi / 4))=\cos ^{-1}\left(\frac{\sqrt{2}}{2}\right)$

$$
y=\tan x
$$

$$
y=\sec x
$$

Definition

$$
\begin{array}{ll}
x=\tan ^{-1} x \Leftrightarrow y=\tan x & x \in(-\pi / 2, \pi / 2) \\
x=\sec ^{-1} y \Leftrightarrow y=\sec x & x \in[0, \pi / 2) \cup(\pi / 2, \pi)
\end{array}
$$

EX 2 Evaluate without a calculator.
a) $\tan ^{-1}(-1)$

b) $\sec ^{-1}(2)$

C) $\arctan \left(\tan \left(\frac{3 \pi}{4}\right)\right)$

EX 3 Calculate $\sin \left[2 \cos ^{-1}(1 / 4)\right]$ with no calculator.

$$
\begin{aligned}
& \sin (2 \underbrace{\cos ^{-1}\left(\frac{1}{4}\right)}_{\theta}) \\
& =\sin (2 \theta) \\
& =2 \sin \theta \cos \theta
\end{aligned}
$$

$$
\text { let } \theta=\cos ^{-1}\left(\frac{1}{4}\right)
$$

$$
\cos \theta=\frac{1}{4}
$$

$$
\sqrt{15}=?
$$

$$
?^{2}+1^{2}=4^{2}
$$

$$
?^{2}=15
$$

(by double angle

$$
\left.=2\left(\frac{\sqrt{15}}{4}\right)\left(\frac{1}{4}\right)^{2}=\frac{\sqrt{15}}{8}\right)
$$

Derivatives of Inverse Trig Functions
Let $y=\cos ^{-1} x$. Find $y^{\prime} . \quad y \in[0, \pi]$

$$
y \in[0, \pi]
$$

$$
\left.\begin{array}{c|c}
\Leftrightarrow \cos y=x & y=\cos ^{-1} x \\
D_{x}(\cos y)=D_{x}(x) & \Rightarrow \sin y=\sin \left(\cos ^{-1} x\right) \\
=\sqrt{1-x^{2}}
\end{array} \right\rvert\, \begin{gathered}
\left.y^{\prime}\right)=1 \\
y^{\prime}=\frac{-1}{\sin y} \\
y^{\prime}=\frac{-1}{\sqrt{1-x^{2}}} \Leftrightarrow D_{x}\left(\cos ^{-1} x\right)=\frac{-1}{\sqrt{1-x^{2}}}
\end{gathered}
$$

$$
\begin{array}{ccc}
D_{x}[\sin x]=\cos x & D_{x}[\cos x]=-\sin x \\
D_{x}[\tan x]=\sec ^{2} x & D_{x}[\cot x]=-\csc ^{2} x \\
D_{x}[\sec x]=\sec x \tan x & D_{x}[\csc x]=-\csc x \cot x
\end{array}
$$

$$
\begin{aligned}
& \mathrm{EX} 4 D_{x}\left[\tan ^{-1}\left(5 x^{2}-3 x+1\right)\right]= \\
& =\frac{1(\mid 0 x-3)}{1+\left(S x^{2}-3 x+1\right)^{2}} \quad \begin{cases}D_{x}\left[\sin ^{-1} x\right]=\frac{1}{\sqrt{1-x^{2}}}, x_{\in}(-1,1) & D_{x}\left[\cos ^{-1} x\right]=\frac{-1}{\sqrt{1-x^{2}}} \\
D_{x}\left[\sec ^{-1} x\right]=\frac{1}{|x| \sqrt{x^{2}-1}},|x|>1 & D_{x}\left[\tan ^{-1} x\right]=\frac{1}{1+x^{2}}\end{cases}
\end{aligned}
$$

EX 5 Evaluate these integrals.
a) $\int_{-1}^{1} \frac{1}{1+x^{2}} d x=\left.\tan ^{-1} x\right|_{-1} ^{1}$

$$
\begin{aligned}
& =\tan ^{-1} 1-\tan ^{-1}(-1) \\
& =\pi 11
\end{aligned}
$$

b) $\int \frac{e^{x}}{1+e^{2 x}} d x / 4-(-\pi / 4)=\frac{\pi}{2}$

$$
\begin{aligned}
& \left.\begin{aligned}
u & =e^{x} \\
d u & =e^{x} d x
\end{aligned} \right\rvert\,=\int \frac{d u}{1+u^{2}}=\int \frac{1}{1+u^{2}} d u \\
& \text { note: } e^{2 x}=\left(e^{x}\right)^{2}=\arctan u+C \\
&=\arctan \left(e^{x}\right)+C
\end{aligned}
$$

conclusion
memorize (or write on a reference sheet)
formulas for inverse trig fin denvatires (integrals)

