

Let $y_{0}=$ population at the start. $t=$ time $d y / d t=k y$ is a reasonable assumption. I.e. The rate of growth or decay is proportional to the population.

$$
\begin{aligned}
& \frac{d y}{d t} \\
& \frac{d y}{d t}=k y \quad \\
& \int \frac{1}{y} d y=\int k d t \\
&(y>0) \ln |y|=k t+c \\
& \ln y=k t+c \\
& e^{\ln y}=e^{k t+c} \\
& y=e^{k t} e^{c} \\
& y=e^{c}\left(e^{k t}\right) \quad \text { constant pop } \\
& \Rightarrow y_{0}=e^{c}\left(e^{k \cdot 0}\right) \\
& \Rightarrow y_{0}=e^{c} \Rightarrow y=y_{0} e^{k t}
\end{aligned}
$$

familiar en to model population growth (or sone exp. growth/decay)

There are other factors that affect population, like resources and land. So population more likely follows a logistic model like this.

EX 1 The population of the US was 3.9 million in 1790 and 178 million in 1960. If the rate of growth is assumed to be proportional to the population, what estimate would you give for the population in the year 2000? (actual answer $=275$ million)
Let $t=0$ in year $1790 \Rightarrow y_{0}=3.9$ (million) exponential growth cure goes through $(0,3.9) \quad(170,178) \quad$ goal : $(210, ?)$

$$
\begin{array}{r}
y=3.9 e^{k t} \\
\text { plug in }(170,178) \quad 178=3.9 e^{k(170)} \\
\frac{178}{3.9}=e^{170 k} \\
\frac{1}{170} \ln \left(\frac{178}{3.9}\right)=k
\end{array}
$$

goal: $y=3.9 e^{\left(\frac{1}{170} \ln \left(\frac{188}{3.9}\right)\right)(210)} \simeq 437.4$ million

Compound Interest Formula

$$
A(t)=A_{0}\left(1+\frac{r}{n}\right)^{n t} \quad \begin{aligned}
& \mathrm{A}_{0}=\text { initial amount } \\
& \mathrm{A}(\mathrm{t})=\text { value after } \mathrm{t} \text { years } \\
& \mathrm{r}=\text { Interest rate } \\
& \mathrm{n}=\text { number of compounding periods } \quad \text { (per year) }
\end{aligned}
$$

What if we compound continuously?

$$
A(t)=\lim _{n \rightarrow \infty} A_{0}\left(1+\frac{r}{n}\right)^{n t}
$$

Theorem

$$
\underbrace{\lim _{h \rightarrow 0}(1+h)^{\frac{1}{h}}=e} \quad\left(1^{\infty} \text { case }\right)
$$

Proof
If $f(x)=\ln x$, then $f^{\prime}(x)=\frac{1}{x}$ and $f^{\prime}(1)=1$

$$
\begin{aligned}
& \Leftrightarrow \quad 1=f^{\prime}(1)=\lim _{h \rightarrow 0} \frac{f(1+h)-f(1)}{h} \quad \text { (by deft } \\
& \text { of denvative) } \\
& 1=\lim _{h \rightarrow 0} \frac{\ln (1+h)-\ln 1}{h} \quad(\ln 1=0) \\
& 1=\lim _{h \rightarrow 0} \frac{\ln (1+h)}{h} \\
& 1=\lim _{h \rightarrow 0} \frac{1}{h} \ln (1+h) \Leftrightarrow 1=\lim _{h \rightarrow 0} \ln (1+h)^{\frac{1}{h}} \\
& 1=\ln \left(\lim _{h \rightarrow 0}(1+h)^{\frac{1}{h}}\right) \\
& e=e^{1}=\lim _{h \rightarrow 0}(1+h)^{\frac{1}{h}} \\
& \begin{array}{l}
\text { note: this } \\
\text { can be }
\end{array} \\
& \text { done } \\
& \text { because } \\
& \ln f_{n} \text { is } \\
& \text { continuous) }
\end{aligned}
$$

Continuous compounding:
EX 2 Compute this limit to get a formula for continuously compounded interest.

$$
\begin{aligned}
A(t) & =\lim _{n \rightarrow \infty}\left(1+\frac{r}{n}\right)^{m} \\
A & =A_{0} \lim _{n \rightarrow \infty}\left(1+\frac{r}{n}\right)^{n t} \\
& =A_{0}\left(\lim _{n \rightarrow \infty}\left(1+\frac{r}{n}\right)^{n}\right)^{t} \\
& =A_{0}\left(\lim _{n \rightarrow \infty}\left(1+\frac{1}{n / r}\right)^{n}\right)^{t} \\
& =A_{0}\left(\lim _{n \rightarrow \infty}\left(1+\frac{1}{n / r}\right)^{n / r}\right)^{r t} \quad\left(a^{n / r}\right)^{r}=a^{n} \\
& =A_{0}\left(\lim _{n}\left(1+\frac{1}{n / r}\right)^{n / r}\right)^{r t} \quad\left(a^{n / r}\right)^{r t}=a^{n t} \\
& =A_{0}\left(\lim _{p \rightarrow \infty}\left(1+\frac{1}{p}\right)^{p}\right)^{r t} \quad\left(l^{n t} p=\frac{n}{r}\right)
\end{aligned}
$$

$$
=A_{0}\left(\lim _{h \rightarrow 0}(1+h)^{\frac{1}{n}}\right)^{n t}
$$

we have

$$
\text { let } h=\frac{1}{p} \quad\left(\frac{1}{h}=p\right)
$$

$$
A=A_{0}(e)^{r t}
$$

$$
\begin{array}{r}
e=\lim _{h \rightarrow 0}(1+h)^{\frac{1}{n}} \\
e=\lim _{n \rightarrow \infty}\left(1+\frac{1}{n}\right)^{n}
\end{array}
$$

$A=A_{0} e^{r t}$ exponential growth

EX 3 Compute this limit.

$$
\begin{equation*}
\lim _{x \rightarrow \infty}\left(\frac{x+3}{x+1}\right)^{x}=e^{2} \tag{1}
\end{equation*}
$$

use

$$
e=\lim _{h \rightarrow 0}(1+h)^{\frac{1}{h}}
$$

do long division:

$$
\begin{equation*}
=\lim _{n \rightarrow \infty}\left(1+\frac{1}{n}\right)^{n} \tag{2}
\end{equation*}
$$

$$
\begin{aligned}
& \begin{array}{c}
1+\frac{2}{x+1} \\
\frac{-(x+1)}{2}
\end{array} \\
& a^{x}=\frac{a^{x+1}}{a} \\
& a^{x}=\left(a^{\frac{x}{2}}\right)^{2} \\
& = \\
& \lim _{x \rightarrow \infty}\left(\frac{x+3}{x+1}\right)^{x}=\lim _{x \rightarrow \infty}\left(1+\frac{2}{x+1}\right)^{x} \\
& =\lim _{x \rightarrow \infty} \frac{\left(1+\frac{1}{\frac{(x+1)}{2}}\right)^{x+1}}{\left(1+\frac{1}{\frac{(x+1)}{2}}\right)} \\
& =\lim _{x \rightarrow \infty} \frac{\left(\left(1+\frac{1}{\frac{(x+1)}{2}}\right)^{\frac{x+1}{2}}\right)^{2}}{\left(1+\frac{1}{\frac{x+1}{2}}\right)} \\
& =\frac{\left(\lim _{x \rightarrow \infty}\left(1+\frac{1}{\frac{x+1}{2}}\right)^{\frac{x+1}{2}}\right)^{2}}{\lim _{x \rightarrow \infty}\left(1+\frac{1}{\frac{x+1 / 2}{0}}\right)} \\
& =\frac{e^{2}}{1}=e^{2} \\
& \text { note: } \\
& \text { if } \\
& x \rightarrow \infty \text {, } \\
& \text { then } \\
& \frac{x+1}{2} \rightarrow \infty
\end{aligned}
$$

"take-home message"
(1) $\lim _{h \rightarrow 0}(1+h)^{1 / h}=e=\lim _{n \rightarrow \infty}\left(1+\frac{1}{n}\right)^{n}$
(2) exponential growth/de cay $y=y_{0} e^{k t}$

