

General Exponential and Logarithmic Functions

$$a^{x} = \exp(\ln a^{x}) = \exp(x \ln a) = e^{x \ln a}$$
 we can rewrite
 \Leftrightarrow $exponentials of any base in terms of base e exponential.$

Properties of Exponents (i)
$$a^{x}a^{y} = a^{x+y}$$
 (iv) $(ab)^{x} = a^{x}b^{x}$
(ii) $\frac{a^{x}}{a^{y}} = a^{x-y}$ (v) $\left(\frac{a}{b}\right)^{x} = \frac{a^{x}}{b^{x}}$
(iii) $(a^{x})^{y} = a^{xy}$
Pf $\left(\frac{a}{b}\right)^{x} = e^{-\ln\left(\frac{a}{b}\right)^{x}}$
 $= e^{x\ln\left(\frac{a}{b}\right)^{x}}$
 $= e^{x\ln\left(\frac{a}{b}\right)^{x}}$
 $= e^{\ln a^{x} - \ln b^{x}}$
 $= e^{\ln\left(\frac{a^{x}}{b^{x}}\right)} = \frac{a^{x}}{b^{x}} \#$

How do we find a derivative or an integral of a^x ?

$$bx [know D_{x}(e^{x})=e^{x}$$

$$D_{x}[a^{x}]=D_{x}(e^{lna^{x}})=D_{x}(e^{xlna}) \qquad (note: lna is a)$$
and
$$and = e^{xlna}(lna) \qquad (onstant)$$

$$\int a^{x}dx = \frac{a^{x}}{lna} + C \qquad = e^{lna^{x}}(lna) = a^{x}(lna)$$

$$D_x[a^x] = a^x lna$$
 $\int a^x dx = \frac{1}{\ln a}(a^x) + C$ $a \neq 1$

$$D_x \left[a^x \right] = a^x \ln a$$
$$\int a^x dx = \frac{1}{\ln a} (a^x) + C \qquad a \neq 1$$

EX 1 Find y'.

$$y = (2x^{3} + 9x)^{4} + 4^{2x^{3} + 9x}$$
Power exponential
term term

$$y' = 4(2x^{3} + 9x)^{3}(6x^{2} + 9) + 4^{2x^{3} + 9x}(\ln 4) \cdot (6x^{2} + 9) = (6x^{2} + 9)[4(2x^{3} + 9x)^{3} + (8n^{4}) + 4^{2x^{3} + 9x}]$$

EX 2 Evaluate
$$\int \frac{2^{\sqrt{x}}}{3\sqrt{x}} dx$$
$$= \frac{1}{3} \int \frac{2^{\sqrt{x}}}{\sqrt{x}} dx$$
$$u = \sqrt{x}$$
$$du = \sqrt{x}$$
$$du = \frac{1}{2} x^{\frac{1}{2}} dx$$
$$= \frac{1}{3} \left(\frac{2}{\sqrt{x}} \right)^{\frac{1}{2}} dx$$
$$= \frac{1}{3} \left(\frac{2}{\sqrt{x}} \right)^{\frac{1}{2}} dx$$
$$= \frac{1}{\sqrt{x}} dx$$
$$= \frac{1}{\sqrt{x}} \left(2^{\sqrt{x}} \right)^{\frac{1}{2}} dx$$
$$v = \frac{1}{\sqrt{x}} \left(2^{\sqrt{x}} \right)^{\frac{1}{2}} dx$$

Remember log definitions from algebra.

$$y = \log_{a} x \iff a^{y} = x$$

$$\int_{a} \int_{a} \frac{1}{2} = \ln x$$

$$\int_{a} \int_{a} \frac{1}{2} = \ln x$$

$$\int_{a} \frac{1}{2} = \ln x$$

$$\int_{a} \frac{1}{2} \left[\log_{a} x \right] = \ln x$$

$$\int_{a} \int_{a} \frac{1}{2} \left[\log_{a} x \right] = \frac{1}{2} \ln x$$

$$\int_{a} \int_{a} \frac{1}{2} \left[\log_{a} x \right] = \frac{1}{2} \ln x$$

$$\int_{a} \int_{a} \frac{1}{2} \left[\log_{a} x \right] = \frac{1}{2} \ln x$$

$$\int_{a} \int_{a} \frac{1}{2} \left[\log_{a} x \right] = \frac{1}{2} \ln x$$

$$\int_{a} \int_{a} \frac{1}{2} \left[\log_{a} x \right] = \frac{1}{2} \ln x$$

$$\int_{a} \int_{a} \frac{1}{2} \left[\log_{a} x \right] = \frac{1}{2} \ln x$$

$$\int_{a} \int_{a} \frac{1}{2} \left[\log_{a} x \right] = \frac{1}{2} \ln x$$

$$\int_{a} \int_{a} \frac{1}{2} \left[\log_{a} x \right] = \frac{1}{2} \ln x$$

$$\int_{a} \int_{a} \frac{1}{2} \left[\log_{a} x \right] = \frac{1}{2} \ln x$$

$$\int_{a} \int_{a} \frac{1}{2} \left[\log_{a} x \right] = \frac{1}{2} \ln x$$

$$\int_{a} \int_{a} \frac{1}{2} \left[\log_{a} x \right] = \frac{1}{2} \ln x$$

$$\int_{a} \int_{a} \frac{1}{2} \left[\log_{a} x \right] = \frac{1}{2} \ln x$$

$$\int_{a} \int_{a} \frac{1}{2} \left[\log_{a} x \right] = \frac{1}{2} \ln x$$

$$\int_{a} \frac{1}{2} \left[\log_{a} x \right] = \frac{1}{2} \ln x$$

$$\int_{a} \frac{1}{2} \left[\log_{a} x \right] = \frac{1}{2} \ln x$$

$$\int_{a} \frac{1}{2} \left[\log_{a} x \right] = \frac{1}{2} \ln x$$

$$\int_{a} \frac{1}{2} \left[\log_{a} x \right] = \frac{1}{2} \ln x$$

$$\int_{a} \frac{1}{2} \left[\log_{a} x \right] = \frac{1}{2} \ln x$$

$$\int_{a} \frac{1}{2} \left[\log_{a} x \right] = \frac{1}{2} \ln x$$

$$\int_{a} \frac{1}{2} \left[\log_{a} x \right] = \frac{1}{2} \ln x$$

$$\int_{a} \frac{1}{2} \left[\log_{a} x \right] = \frac{1}{2} \ln x$$

$$\int_{a} \frac{1}{2} \left[\log_{a} x \right] = \frac{1}{2} \ln x$$

$$\int_{a} \frac{1}{2} \left[\log_{a} x \right] = \frac{1}{2} \ln x$$

$$\int_{a} \frac{1}{2} \left[\log_{a} x \right] = \frac{1}{2} \ln x$$

$$\int_{a} \frac{1}{2} \left[\log_{a} x \right] = \frac{1}{2} \ln x$$

$$\int_{a} \frac{1}{2} \left[\log_{a} x \right] = \frac{1}{2} \ln x$$

$$\int_{a} \frac{1}{2} \left[\log_{a} x \right] = \frac{1}{2} \ln x$$

$$\int_{a} \frac{1}{2} \left[\log_{a} x \right] = \frac{1}{2} \ln x$$

$$\int_{a} \frac{1}{2} \left[\log_{a} x \right] = \frac{1}{2} \ln x$$

$$\int_{a} \frac{1}{2} \left[\log_{a} x \right] = \frac{1}{2} \ln x$$

$$\int_{a} \frac{1}{2} \left[\log_{a} x \right] = \frac{1}{2} \ln x$$

$$\int_{a} \frac{1}{2} \left[\log_{a} x \right] = \frac{1}{2} \ln x$$

$$\int_{a} \frac{1}{2} \left[\log_{a} x \right] = \frac{1}{2} \ln x$$

$$\int_{a} \frac{1}{2}$$

EX 3 Find y'.
$$y = \sin^2 x + 2^{\sin x}$$

 $y = (\sin x)^2 + 2^{\sin x}$
 $ponennle/$
 $chain vule$
 $y' = 2(\sin x)'(\cos x) + 2^{\sin x}(\ln 2)(\cos x)$
 $y' = \cos x(2\sin x + (\ln 2)2^{\sin x})$

EX 4 Findy'.
$$y = x^{*}$$
 Hint Take the log of both sides. We can't "classify" (logan thruc
thris fn. (logan thruc thris))
 $lny = lnx^{*}$
 D_{x} : $lny = x lnx$
 $\frac{1}{y} (\frac{dy}{dx}) = l \cdot lnx + x(\frac{1}{x})$
 $\frac{1}{y} (\frac{dy}{dx}) = l \cdot lnx + x(\frac{1}{x})$
 $\frac{1}{y} (\frac{dy}{dx}) = lnx + l \Rightarrow y' = y(lnx+1) = x^{*}(lnx+1)$
EX 5 Evaluate $\int_{0}^{1} (10^{3x} + 10^{-3x}) dx$ Need: $a > 0, a \neq l$
 $= \int_{0}^{1} 10^{3x} dx + \int_{0}^{1} 10^{-3x} dx$ Need: $a > 0, a \neq l$
 $\int a^{x} dx = \frac{a^{x}}{lna} + C$
 $= \int_{0}^{1} 1000^{x} dx + \int_{0}^{1} (10^{-3x} dx)$ $D^{3x} = (10^{3})^{x}$
 $= \frac{1000^{x}}{ln} dx + \int_{0}^{1} (10^{-3x} dx)$ $D^{3x} = (10^{3})^{x}$
 $= \frac{1000^{x}}{ln} dx + \int_{0}^{1} (10^{-3x} dx)$ $D^{3x} = (10^{3})^{x}$
 $= \frac{1000^{x}}{ln} dx + \int_{0}^{1} (10^{-3x} dx)$ $D^{3x} = (10^{3})^{x}$
 $= \frac{1000^{x}}{ln} dx + \int_{0}^{1} (10^{-3x} dx)$ $D^{3x} = (10^{3})^{x}$
 $= \frac{1000^{x}}{ln} dx + \int_{0}^{1} (10^{-3x} dx)$ $D^{3x} = (10^{3})^{x}$
 $= \frac{1000^{x}}{ln} dx + \int_{0}^{1} (10^{-3x} dx)$ $D^{3x} = (10^{-3})^{x}$
 $= \frac{1000^{x}}{ln} dx + \frac{1}{ln} dx$ $D^{3x} = (10^{-3})^{x}$
 $= \frac{1000^{x}}{ln} dx + \frac{1}{ln} dx$ $D^{3x} = (10^{-3})^{x}$
 $= \frac{1000^{x}}{ln} dx + \frac{1}{ln} dx$ $D^{3x} = (10^{-3})^{x}$
 $= \frac{1000^{x}}{ln} dx + \frac{1}{ln} dx$ $D^{3x} = (10^{-3})^{x}$
 $= \frac{1000^{x}}{ln} dx + \frac{1}{ln} dx$ $D^{3x} = (10^{-3})^{x}$
 $= \frac{1000^{x}}{ln} dx + \frac{1}{ln} dx$ $D^{3x} = (10^{-3})^{x}$
 $= \frac{1000^{x}}{ln} dx + \frac{1}{ln} dx$ $D^{3x} = (10^{-3})^{x}$
 $= \frac{1000^{x}}{ln} dx + \frac{1}{ln} dx$ $D^{3x} = (10^{-3})^{x}$
 $= \frac{1000^{x}}{ln} dx + \frac{1}{ln} dx$ $D^{3x} = (10^{-3})^{x}$
 $= \frac{1}{ln} dx$ $D^{3x} = (10^{-3})^{x}$ $D^{3x} = (10^{-3})^{x}$
 $= \frac{1}{ln} dx$ $D^{3x} = (10^{-3})^{x}$ $D^{3x} = (10^{-3})^{x}$

EX 6 If
$$y = (\ln x^2)^{2x+3}$$
 find y'.

$$ln y = ln(lnx^2)^{2x+3}$$

$$= (ln(x^2))^{2x+3}$$

$$p_x: ln y = (2x+3) ln(lnx^2)$$

$$= (ln(x^2))^{2x+3}$$

$$= (ln(x^2))^{2x+3}$$

$$= (ln(x^2))^{2x+3}$$

$$= (ln(x^2))^{2x+3}$$

$$= (ln(x^2))^{2x+3}$$

$$= (2x+3) (ln(x^2))^{2x+3}$$

Final Message

$$a > 0, a \neq 1$$

 $D_x(a^x) = (lna)a^x$
 $\int a^x dx = \frac{1}{lna}a^x + c$

$$D_{x}(\log_{a} x) = \frac{1}{x \ln a}$$