

$$
\begin{aligned}
& a^{x}=\exp \left(\ln a^{x}\right)=\exp (x \ln a)=e^{x \ln a} \\
& \Leftrightarrow \\
& \ln \left(a^{x}\right)=\ln \left(e^{x \ln a}\right)=x \ln a
\end{aligned}
$$

we can rewrite exponenticuls of any base in terms of base e exponential.

Properties of Exponents
(i) $a^{x} a^{y}=a^{x+y}$
(iv) $(a b)^{x}=a^{x} b^{x}$
(ii) $\frac{a^{x}}{a^{y}}=a^{x-y}$
(v) $\left(\frac{a}{b}\right)^{x}=\frac{a^{x}}{b^{x}}$

$$
\begin{aligned}
\text { Pf }\left(\frac{a}{b}\right)^{x} & =e^{(i i i)\left(a^{x}\right)^{y}=a^{x y}} \\
& =e^{x \ln \left(\frac{a}{b}\right)^{x}} \\
& =e^{x(\ln a-\ln b)} \\
& =e^{x \ln a-x \ln b} \\
& =e^{\ln a^{x}-\ln b^{x}} \\
& =e^{\ln \left(\frac{a^{x}}{b^{x}}\right)}=\frac{a^{x}}{b^{x}} 4
\end{aligned}
$$

How do we find a derivative or an integral of $a^{x}$ ?

$$
\text { we know } D_{x}\left(e^{x}\right)=e^{x}
$$

$$
\begin{aligned}
& D_{x}\left[a^{x}\right]=D_{x}\left(e^{\ln a^{x}}\right)=D_{x}\left(e^{x \ln a}\right) \quad\left(\begin{array}{l}
\text { note: } \\
\ln a \\
\text { constant }
\end{array}\right) \\
& \text { and } \left.\begin{array}{l}
\text { is } \\
\int a^{x} d x=\frac{a^{x}}{\ln a}+C
\end{array} \right\rvert\,=e^{x \ln a}(\ln a) \\
&
\end{aligned}
$$

$$
D_{x}\left[a^{x}\right]=a^{x} \ln a \quad \quad \int a^{x} d x=\frac{1}{\ln a}\left(a^{x}\right)+C \quad a \neq 1
$$

$$
\begin{aligned}
& D_{x}\left[a^{x}\right]=a^{x} \ln a \\
& \int a^{x} d x=\frac{1}{\ln a}\left(a^{x}\right)+C
\end{aligned} \quad a \neq 1
$$

EX 1 Find $y^{\prime}$.

$$
\begin{aligned}
y & =\underbrace{\left.2^{3}+9 x\right)}_{\begin{array}{c}
\text { Power } \\
\text { term exponential } \\
\text { term }
\end{array}}+\underbrace{4^{2 x^{3}+9 x}} \\
y^{\prime} & =4\left(2 x^{3}+9 x\right)^{3}\left(6 x^{2}+9\right)+4^{2 x^{3}+9 x}(\ln 4) . \\
& \left.=\left(6 x^{2}+9\right)\left[4\left(2 x^{3}+9 x\right)^{3}+(\ln 4) 4^{2 x^{3}+9 x}\right]\right)
\end{aligned}
$$

EX 2 Evaluate $\int \frac{2^{\sqrt{x}}}{3 \sqrt{x}} d x$.

$$
\begin{aligned}
&=\frac{1}{3} \int \frac{2^{\sqrt{x}}}{\sqrt{x}} d x \\
& u=\sqrt{x} \\
& \left.d u=\frac{1}{2} x^{-1 / 2} d x \right\rvert\,=\frac{1}{3}(2) \int 2^{u} d u \\
& 2 d u=\frac{1}{\sqrt{x}} d x=\frac{2}{3}\left(\frac{2^{u}}{\ln 2}\right)+c \\
&=\frac{2}{3 \ln 2}\left(2^{\sqrt{x}}\right)+C \\
& \text { or } \frac{2}{\ln 8}\left(2^{\sqrt{x}}\right)+C \\
& \text { or } \frac{1}{\ln 8}\left(2^{\sqrt{x}+1}\right)+C
\end{aligned}
$$

Remember log definitions from algebra.

$$
\begin{aligned}
y=\log _{a} x \Leftrightarrow & a^{y}=x \\
& \ln a^{y}=\ln x \\
& y \ln a=\ln x \\
y= & \frac{\ln x}{\ln a}=\log _{a} x \\
D_{x}\left(\log _{a} x\right)= & D_{x}\left(\frac{\ln x}{\ln a}\right)=\frac{1}{\ln a} D_{x}(\ln x)=\frac{1}{\ln a}\left(\frac{1}{x}\right)
\end{aligned}
$$

We know $D_{x} x^{a}=a x^{a-1}$ is true for rational a. What if a is irrational?
(revisiting the power

$$
\begin{aligned}
D_{x}\left(x^{a}\right) & =D_{x}\left(e^{\ln x^{a}}\right) \\
& =D_{x}\left(e^{a \ln x}\right) \\
& =e^{a \ln x}\left(a\left(\frac{1}{x}\right)\right) \\
& =x^{a}\left(\frac{a}{x}\right)=a x^{a-1}
\end{aligned}
$$

EX 3 Find $y^{\prime} . y=\sin ^{2} x+2^{\sin x}$

$$
\begin{aligned}
& y=\sin ^{2} x+2^{\sin } \\
& y=(\sin x)^{2}+2^{\sin x}
\end{aligned} \quad \begin{aligned}
& D_{x}\left(a^{x}\right) \\
& =a^{x} \ln a
\end{aligned}
$$


chainvule

$$
\begin{aligned}
& y^{\prime}=2(\sin x)^{\prime}(\cos x)+2^{\sin x}(\ln 2)(\cos x) \\
& \left.y^{\prime}=\cos x(2 \sin x+\ln 2) 2^{\sin x}\right)
\end{aligned}
$$

EX 4 Find $y^{\prime} . y=x^{x} \quad$ Hint: Take the log of both sides.
note: we cant "classify" this $f_{n}$.
(logarithmic differentiation)

$$
\begin{aligned}
& \ln y=\ln x^{x} \\
& D_{x}: \quad \ln y=x \ln x \\
& \frac{1}{y}\left(\frac{d y}{d x}\right)=1 \cdot \ln x+x\left(\frac{1}{x}\right) \\
& \frac{1}{y}\left(y^{\prime}\right)=\ln x+1 \Rightarrow y^{\prime}=y(\ln x+1)=x^{x}(\ln x+1)
\end{aligned}
$$

EX 5 Evaluate $\int_{0}^{1}\left(10^{3 x}+10^{-3 x}\right) d x$
need: $a>0, a \neq 1$

$$
\begin{aligned}
& =\int_{0}^{1} 10^{3 x} d x+\int_{0}^{1} 10^{-3 x} d x \\
& \int a^{x} d x=\frac{a^{x}}{\ln a}+c \\
& =\int_{0}^{1} 1000^{x} d x+\int_{0}^{1}\left(\frac{1}{1000}\right)^{x} d x \\
& 10^{3 x}=\left(10^{3}\right)_{x}^{x} \\
& =\left.\frac{1000^{x}}{\ln 1000}\right|_{0} ^{1}+\left.\frac{\left(\frac{1}{1000}\right)^{x}}{\ln \left(\frac{1}{1000}\right)}\right|_{0} ^{1} \\
& =\left(\frac{1000}{\ln 1000}-\frac{1}{\ln 1000}\right)+\left(\frac{1}{\frac{1000}{\ln \left(\frac{1}{1000}\right)}}-\frac{1}{\ln \left(\frac{1}{1000}\right)}\right) \\
& =\frac{999}{\ln 1000}+\frac{-999}{1000}\left(\frac{1}{-\ln 1000}\right) \quad \sqrt{\ln \left(\frac{1}{1000}\right)} \\
& =\frac{1}{\ln 1000}\left(999+\frac{999}{1000}\right) \\
& =\ln 1000^{-1} \\
& =-\ln 1000 \\
& =\frac{999.999}{\ln 1000}
\end{aligned}
$$

EX 6 If $y=\left(\ln x^{2}\right)^{2 x+3}$ find $y^{\prime}$.

$$
\ln y=\ln \left(\ln x^{2}\right)^{2 x+3}
$$

$$
\begin{aligned}
D_{x}: \quad \ln y & =\underbrace{(2 x+3)}_{\text {(2) }} \ln \left(\ln x^{2}\right) \\
\frac{1}{y} y^{\prime} & =2\left(\ln \left(\ln x^{2}\right)\right)+(2 x+3)\left(\frac{1}{\ln x^{2}}\right)\left(\frac{1}{x^{2}}\right)(2 x) \\
y^{\prime} & =y\left[2 \ln \left(\ln x^{2}\right)+\frac{x(2 x+3)}{x \ln x^{2}}\right] \\
y^{\prime} & =\left(\ln x^{2}\right)^{2 x+3}\left[2 \ln \left(\ln x^{2}\right)+\frac{2 x+3}{x \ln x}\right]
\end{aligned}
$$

$\frac{\text { notn }}{\left(\ln x^{2}\right)^{(2 x+3)}}$
$=\left(\ln \left(x^{2}\right)\right)^{2 x+3}$

Final Message

$$
\begin{aligned}
& a>0, a \neq 1 \\
& D_{x}\left(a^{x}\right)=(\ln a) a^{x} \\
& \int a^{x} d x=\frac{1}{\ln a} a^{x}+c
\end{aligned}
$$

