

The Natural Exponential Function

Remember the graph of $y=\ln x$.

Let's call the inverse function "exp."

It is strictly monotonic, so it has an inverse function.

domain of $f(x)=$ range of $f^{-1}(x)$.
because \ln and exp are inverses
$\ln (\exp (x))=x$
$\exp (\ln (x))=x$

Definition: Let e be a real number such that $\ln e=1$.

$$
\begin{aligned}
r \in \mathbb{R}, \exp (r) & =\exp (r \ln e) \quad \sin c e \ln e=1 \\
& =\exp \left(\ln e^{r}\right) \\
& =e^{r} \Rightarrow \text { very cool }
\end{aligned}
$$

we now know the inverse of $\ln (x)=f(x)$ is none other than our old friend the exponential fin $\omega /$ base e, ie.

$$
f^{-1}(x)=e^{x}
$$

Theorem Let a and b be real numbers. Then $e^{a} e^{b}=e^{a+b} \quad$ and $\frac{e^{a}}{e^{b}}=e^{a-b}$ claim: $\frac{e^{a}}{e^{b}}=e^{a-b}$
Proof:

$$
\begin{aligned}
\frac{e^{a}}{e^{b}} & =\exp \left(\ln \left(\frac{e^{a}}{e^{b}}\right)\right) \\
& =\exp \left(\ln e^{a}-\ln e^{b}\right) \\
& =\exp (a \ln e-b \ln e) \\
& =\exp (a \cdot 1-b \cdot 1) \\
& =\exp (a-b) \\
& =e^{a-b}
\end{aligned}
$$

How do we take a derivative?
Let $y=e^{x}<=>\ln y=x \quad$ (know the denvative of

$$
\begin{aligned}
D_{x}(\ln y)=D_{x}(x) & \ln x) \\
\frac{1}{y}\left(\frac{d y}{d x}\right)=1 & \Leftrightarrow \frac{d y}{d x}=y=e^{x} \\
& \Rightarrow D_{x}\left(e^{x}\right)=e^{x} \Rightarrow \begin{array}{l}
e^{x} d x \\
=e^{x}+c
\end{array}
\end{aligned}
$$

$$
\begin{aligned}
& y=e^{x^{2}-3 x} \\
& y^{\prime}=e^{x^{2}-3 x}(2 x-3)
\end{aligned}
$$

EX 2 Find $y^{\prime} . y=e^{\frac{Q 2}{\sqrt{x} \ln x}}$

$$
\begin{aligned}
y^{\prime} & =e^{\sqrt{x} \ln x}\left(\frac{1}{2} x^{-1 / 2} \ln x+\sqrt{x}\left(\frac{1}{x}\right)\right) \\
& =e^{\sqrt{x} \ln x}\left(\frac{\ln x}{2 \sqrt{x}}+\frac{1}{\sqrt{x}}\right)
\end{aligned}
$$

EX 3 For $f(x)$ analyze the graph. (I.e. min, max, concavity, inflection pts, sketch.)

$$
\begin{aligned}
& f(x)=e^{x}-e^{-x} \quad f(0)=e^{0}-e^{0}=0 \\
& f^{\prime}(x)=e^{x}-e^{-x}(-1)=e^{x}+e^{-x}=e^{x}+\frac{1}{e^{x}} \\
& =\frac{e^{2 x}+1}{e^{x}}>0 \text { always }
\end{aligned}
$$

$$
\longleftrightarrow+f^{\prime}(x) \Rightarrow \text { no min/max pts. }
$$

$$
f^{\prime \prime}(x)=e^{x}+e^{-x}(-1)=e^{x}-\frac{1}{e^{x}}=0
$$

$$
e^{x}=\frac{1}{e^{x}} \leftrightarrow e^{2 x}=1
$$

$$
\xrightarrow[\substack{\text { concave } \\ \text { down }}]{-}+\underset{\text { concave }}{\text { up }}+f^{\prime \prime}(x)
$$

$$
\begin{aligned}
2 x & =0 \\
x & =0
\end{aligned}
$$

test: (1) $x=-1, \frac{1}{e}-e<0$
(2) $x=1, e-\frac{1}{e}>0 \Rightarrow$ inflects pt at $(0,0)$

Since $\quad D_{x}\left[e^{x}\right]=e^{x}$, then $\int e^{x} d x=e^{x}+C$.

EX 4 Evaluate these integrals.

$$
\begin{aligned}
& \text { a) } \int e^{-6 x} d x=-\frac{1}{6} \int e^{u} d u \\
& u=-6 x \\
& d u=-6 d x=\frac{-1}{6}\left(e^{u}\right)+C \\
&-\frac{1}{6} d u=d x=-\frac{1}{6} e^{-6 x}+C
\end{aligned}
$$

b) $\int e^{\left(x+e^{x}\right)} d x$

$$
\begin{aligned}
=\int e^{x} \mid e^{e^{x}} d x & =\int e^{u} d u \\
& =e^{u}+C \\
d u & =e^{x} d x
\end{aligned}
$$

$$
\begin{aligned}
& \text { c) } \int \frac{e^{3 / x}}{x^{2} d x}=-\frac{1}{3} \int e^{u} d u \\
& u=\frac{3}{x} \\
& d u=-3 x^{-2} d x=-\frac{1}{3} e^{u}+C \\
&-\frac{1}{3} d u=\frac{1}{x^{2}} d x=-\frac{1}{3} e^{3 / x}+C
\end{aligned}
$$

masin point

$$
\begin{aligned}
& D_{x}\left(e^{x}\right)=e^{x} \\
& \int e^{x} d x=e^{x}+C
\end{aligned}
$$

