

Inverse Functions
If $f(x)$ and $f^{-1}(x)$ are inverse functions:

* $f(x)$ must be one-to-one, I.e. The inverse exists when we can get back to an x given a y. The horizontal line test may be used.
* If (a, b) is on $f(x)$, then (b, a) is on $f^{-1}(x)$.
* $f(f-1(x))=f^{-1}(f(x))=x \quad$ (f of f^{-1} "undo" each
* The domain of $f(x)$ becomes the range of $f^{-1}(x)$ other)
* The range of $f(x)$ becomes the domain of $f^{-1}(x)$

Note: $f^{-1}(x)$ is not the reciprocal,,$\underline{1}$

$$
f^{-1}(x)
$$

Let's look at two functions:

$$
f(x)=x^{3}
$$

$$
f(x)=x^{2}
$$

passes hoviz. lime test
dues not pass \rightarrow it has an morse horn. line test (HIT)
\Rightarrow it has no inverse

If we don't have a graph, how can we algebraically test if a function has an inverse?

Theorem A If f is strictly monotonic on its domain, then f has an inverse.
monotonic means it's either always (\Rightarrow if $f^{\prime}(x) \geq 0$ or if $f^{\prime}(x) \leq 0$) EX 1 Show that this function has an inverse, but do not find it.

$$
f(x)=3 x^{7}+4 x^{3}+x-3
$$

(note. there is no way to find $f^{-1}(x)$.)

$$
f^{\prime}(x)=21 x^{6}+12 x^{2}+1>0 \text { for all } x
$$

has only pos. coefficients and all even-powered terms

$$
\Rightarrow f^{-1}(x) \text { exists }\left(\text { since } f^{\prime}(x)>0\right)
$$

EX 2 Explore whether this function has an inverse. If not, can we restrict the domain so it does? If so, find $f^{-1}(x)$.

$$
\begin{aligned}
& f(x)=x^{2}-4 \\
& f^{\prime}(x)=2 x<f^{\prime} x \geq 0, f^{\prime}(x) \geq 0 \\
& \text { if } x<0, f^{\prime}(x)<0
\end{aligned}
$$

in is not monotonic $\Rightarrow f^{-1}(x)$ ANE however, if we have $f(x)=x^{2}-4, x \geq 0$
then $f^{\prime}(x) \geq 0$ on that domain
$\Rightarrow f^{-1}(x)$ null exist

$$
f^{-1}(x)=\sqrt{x+4}
$$

check: $f^{-1}(f(x))=f^{-1}\left(x^{2}-4\right)$

$$
\begin{aligned}
& =\sqrt{\left(x^{2}-4\right)+4} \\
& =\sqrt{x^{2}}=|x| \quad \text { but } x \text { is } \\
& =x \notin V \quad \text { restricted } x \geqslant 0
\end{aligned}
$$

EX 3 Find $f^{-1}(x)$ for this function and check your work.

$$
\begin{array}{r}
f(x)=y=\frac{2 x-1}{3+5 x} \quad \text { (review exercise) } \\
\begin{array}{l}
(3+5 x) y=2 x-1 \\
3 y+5 x y=2 x-1 \\
3 y+1=2 x-5 x y \\
3 y+1=x(2-5 y) \\
\frac{3 y+1}{2-5 y}=x \Rightarrow f^{-1}(y)=\frac{3 y+1}{2-5 y} \\
\\
\end{array} \quad f f^{-1}(x)=\frac{3 x+1}{2-5 x}
\end{array}
$$

check: $\left(f^{-1}(f(x))=x\right.$ or $\left.f\left(f^{-1}(x)\right)=x\right)$

$$
\begin{aligned}
& f^{-1}(f(x))=f^{-1}\left(\frac{2 x-1}{3+5 x}\right) \\
&\left.=\frac{3\left(\frac{2 x-1}{3+5 x}\right)+1}{2-5\left(\frac{2 x-1}{3+5 x}\right)}\right)\left(\frac{3+5 x}{3+5 x}\right) \\
&=\frac{3(2 x-1)+1(3+5 x)}{2(3+5 x)-5(2 x-1)} \\
&=\frac{6 x-3 /+73+5 x}{6+10 \not x-10 x+5} \quad \begin{aligned}
& \text { note : we } \\
& \text { chock (if } \\
&\left.=\frac{11 x}{11}=x, ~ c o n c u r n e d\right) \text { that }
\end{aligned} \\
& \text { domain of } f(x) \\
&=\text { range of } f^{-1}(x) \\
& \text { and domain of } f^{\prime \prime}(x)
\end{aligned}
$$

The graph of $f^{-1}(x)$ is $f(x)$ reflected across the line $y=x$.

Notice the slope at (d, c) and the slope at (c,d).

$$
\left(f^{-1}\right)^{\prime}(d)=\frac{1}{f^{\prime}(c)}
$$

$m_{f}=\frac{\Delta y}{\Delta x} \quad m_{f^{\prime}}=\frac{\Delta x_{f}}{\Delta y_{f}}$
in other words
x, y referring to $f(x)$ slopes are reciprocals $f(x)$
graph at corresponding pts.

Theorem B: Inverse Function Theorem
If f is differentiable, strictly monotonic on an interval and
$f^{\prime}(x) \neq 0$ at some x on the interval, then $f^{-1}(x)$ is differentiable at a corresponding point in the range of f and $\left(f^{-1}\right)^{\prime}(y)=\frac{1}{f^{\prime}(x)}$.

$$
\frac{d x}{d y}=\frac{1}{d y / d x}
$$

EX 4 Find $\left(f^{-1}\right)^{\prime}(2)$ using theorem B. $f(x)=x^{5}+5 x-4$

$$
\begin{aligned}
f^{\prime}(x) & =\underset{\geq 0}{5 x^{4}+5}>0 \\
& \Rightarrow f^{-1}(x) \text { exists. }
\end{aligned}
$$

$\begin{aligned} & f(x) \text { is } \\ & \Rightarrow \text { strictly } \\ & \text { monotonically }\end{aligned}$ increasing

$$
\begin{aligned}
& \text { slope of } f^{-1}(x)=y \text { at } x-2 \equiv \text { slope of } \\
& y=f(x) \text { where } y=2 . \\
& \Rightarrow 2=x^{5}+5 x-4 \\
& 6=x^{5}+5 x \\
& \text { guess } x=1: 6 \stackrel{?}{=} 1^{5}+5(1) \text { yes } \\
& y=f(x) \text { goes tho }(1,2) \\
& \Rightarrow y=f^{-1}(x) \text { goer thru }(2,1) \\
& \left(f^{-1}\right)^{\prime}(2)=\frac{1}{f^{\prime}(1)}=\frac{1}{5\left(1^{4}\right)+5} \\
& =\frac{1}{10}
\end{aligned}
$$

mali pt:
inverse firs $f^{-1}(x)$
inverse tins exist if $f^{\prime}(x) \geq 0$

$$
\text { or } f^{\prime}(x) \leq 0
$$

(ie. if f is monotonic, then $f^{-1}(x)$ exists)

