

Inverse Functions

If f(x) and $f^{-1}(x)$ are inverse functions:

- * f(x) must be one-to-one, I.e. The inverse exists when we can get back to an x given a y. The horizontal line test may be used.
- * If (a,b) is on f(x), then (b,a) is on $f^{-1}(x)$.

* If (a,b) is on f(x), when (x, x) = x* $f(f^{-1}(x)) = f^{-1}(f(x)) = x$ (f & f -1 "undo" each other)

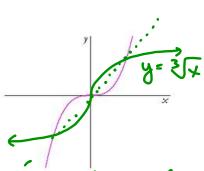
- * The domain of f(x) becomes the range of $f^{-1}(x)$
- * The range of f(x) becomes the domain of $f^{-1}(x)$

Note: $f^{-1}(x)$ is not the reciprocal,

Let's look at two functions:

 $f(x) = x^3$

 $f(x) = x^2$



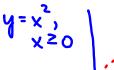
=) it has an inverse

dues not pass honz. line test (417)

=) it has no inverse

this passes

HLT



If we don't have a graph, how can we algebraically test if a function has an inverse?

<u>Theorem A</u> If f is strictly monotonic on its domain, then f has an inverse.

monotonic means it's either always nondecreasing or always nonincreasing. (⇒ if f'(x)≥0 or if f'(x) ≤0)

EX 1 Show that this function has an inverse, but do not find it.

$$f(x) = 3x^7 + 4x^3 + x - 3$$
(note: there is no way to find $f^{-1}(x)$.)

Passes

$$f'(x)=2|x^6+|2x^2+|>0$$
 for all x.
has only pos. (orthicients and
all even-powered terms
 $=) f''(x)$ exists (sma $f'(x)>0$)

EX 2 Explore whether this function has an inverse. If not, can we restrict the domain so it does? If so, find $f^{-1}(x)$.

$$f(x) = x^{2} - 4$$

$$f'(x) = 2x \qquad \text{if } x \ge 0, \ f'(x) \ge 0$$

$$\text{if } x < 0, \ f'(x) < 0$$

however, if we have $f(x) = x^2 - 4$, $x \ge 0$ then $f'(x) \ge 0$ on that domain

$$=) f'(x) \text{ will exist}$$

$$f'(x) = \sqrt{x+4}$$

check:
$$f^{-1}(f(x)) = f^{-1}(x^2 - 4)$$

$$= \sqrt{(x^2 - 4) + 4}$$

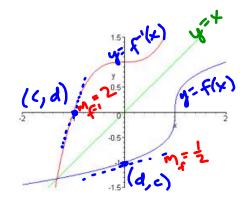
$$= \sqrt{x^2} = |x| \quad \text{but } x \text{ is}$$

$$= x \text{ is}$$

$$= x \text{ is}$$

$$= x \text{ is}$$

EX 3 Find $f^{-1}(x)$ for this function and check your work.



wt. The who efercing to

The graph of $f^{-1}(x)$ is f(x) reflected across the line y = x.

Notice the slope at (d,c) and the slope at (c,d).

$$\left(f^{-1}\right)'\left(d\right) = \frac{1}{f'\left(c\right)}$$

slopes are recipocals

((x) at corresponding pts

Theorem B: Inverse Function Theorem

If f is differentiable, strictly monotonic on an interval and $f'(x) \neq 0$ at some x on the interval,

 $f(x) \neq 0$ at some x on the interval,

then $f^{-1}(x)$ is differentiable at a corresponding point

in the range of f and $(f^{-1})'(y) = \frac{1}{f'(x)}$.

$$\frac{dx}{dy} = \frac{1}{dy / dx}$$

EX 4 Find $(f^{-1})'(2)$ using theorem B. $f(x) = x^5 + 5x - 4$

pare
$$f'(x) = 5x^4 + 5 > 0 \Rightarrow shidly$$

prints

 $20 > 0$

monotonically

Lincheasing

slope of
$$f^{-1}(x) = y$$
 at $x=2 = slope of$ $y = f(x)$ where $y = 2$.

$$\Rightarrow 2 = x^{5} + 5x - 4$$

$$6 = x^{5} + 5x$$

$$9 = f(x) \quad 9 = f(x) \quad 9$$

main pt: inverse first exist if $f'(x) \ge 0$ or $f'(x) \le 0$ (i.e. if f is monotonic, then f''(x) exists)