

The Polar Coordinate System is a different way to express points in a plane.

From Rectangular $/$ From Polar to to Polar Cords
given (x, y)
then $\left\{\begin{array}{l}r=\sqrt{x^{2}+y^{2}} \\ \tan \theta=\frac{y}{x}\end{array}\right.$

Rectangular (Cords
given (r, θ)
then $\left\{\begin{array}{l}x=r \cos \theta \\ y=r \sin \theta\end{array}\right.$

EX 1 Find the rectangular coordinates for this point. (4, $\pi / 6$)
find (x, y)

$$
\begin{gathered}
x=r \cos \theta=4 \cos \left(\frac{\pi}{6}\right)=4\left(\frac{\sqrt{3}}{2}\right)=2 \sqrt{3} \\
y=r \sin \theta=4 \sin \left(\frac{\pi}{6}\right)=4\left(\frac{1}{2}\right)=2 \\
(2 \sqrt{3}, 2)
\end{gathered}
$$

EX 2 Find the polar coordinates for this point. $\begin{array}{r}x \\ (-2,2)\end{array}$

$$
\begin{array}{l|r}
r^{2}=x^{2}+y^{2} & \tan \theta=\frac{2}{-2}=-1 \\
r^{2}=4+4 & \tan \theta=-1 \\
r= \pm 2 \sqrt{2} & \theta=3 \pi / 4 \\
r=2 \sqrt{2} & \\
& p+(2 \sqrt{2}, 3 \pi / 4)
\end{array}
$$

Note:

$$
\arctan (-1)=-\pi / 4
$$

There are an infinite number of ways to write the same point in polar coordinates. The point $(2, \pi / 4)$ has other names.

$$
\begin{aligned}
& \left(2, \frac{9 \pi}{4}\right) \\
& (-2,5 \pi / 4)
\end{aligned}
$$

EX 3 Find three other ways to represent the polar coordinates for this point. (-3, $2 \pi / 3$)

$$
\begin{aligned}
& (3,-\pi / 3) \\
& (3,5 \pi / 3) \\
& (-3,-4 \pi / 3)
\end{aligned}
$$

EX 4 Plot $r=6 \sin \theta$.
Prove that it is a circle in the Cartesian Coordinate system.

$$
r=6 \sin \theta
$$

$$
r^{2}=6 r \sin \theta \quad(\text { remember } \quad r \sin \theta=y)
$$

$$
x^{2}+y^{2}=6 y \quad \text { and } x^{2}+y^{2}=r^{2}
$$

$$
x^{2}+\left(y^{2}-6 y+9\right)=0+9
$$

$$
x^{2}+(y-3)^{2}=9
$$

$x^{2}+(y-3)^{2}=3^{2}$ this is a circle centered at $(0,3) w /$ radius 3 .

1) Lines
$P(r, \theta)$ a point on the line
$d=1$ distance to line extract the triangle: (from origin)
$\theta_{0}=$ angle to the 1 line

$$
d \sqrt{\theta_{0}-\theta / r}
$$ connecting the origin to line we want

$$
\cos \left(\theta_{0}-\theta\right)=\frac{d}{r}
$$

compare w/:

$$
y=m x+b
$$ m, b fixed constants

$$
\Leftrightarrow \underbrace{r=\frac{d}{\cos \left(\theta_{0}-\theta\right)} \text { ign of }} \text { line }
$$

2) Circles
$a=$ radius of circle
$C=$ distance from
origin to the center of circle
$P=$ generic pt on circle $P(r, \theta)$
$\theta_{0}=$ angle to the line connecting

(not a right triangle) origin and center of circle.
use law of cosines

$$
a^{2}=r^{2}+c^{2}-2 r c \cos \left(\theta-\theta_{0}\right)
$$ circle eqn

r, Θ variables
a, c, θ_{0} are fixed
compare w/

$$
(x-h)^{2}+(y-k)^{2}=r^{2}
$$

Special Cases: x, y variables h, k, r fixed constants
If $c=a$ (circk goes through origin),

$$
\begin{aligned}
a^{2} & =r^{2}+a^{2}-2 a r \cos \left(\theta-\theta_{0}\right) \\
-a^{2} & -a^{2} \\
0 & =r^{2}-2 a r \cos \left(\theta-\theta_{0}\right) \\
0 & =r\left(r-2 a \cos \left(\theta-\theta_{0}\right)\right)
\end{aligned}
$$

$y=\varnothing$ or $r=2 a \cos \left(\theta-\theta_{0}\right)$ formula for
 arcle that goes through
if $\theta_{0}=0, r=2 a \cos \theta$ the origin.
if $\theta_{0}=\pi h$, we have $r=2 a \cos (\theta-\pi / 2)$

$$
r=2 a \sin \theta
$$

$$
|\overline{P F}|=e|\overline{P L}|
$$

$e-$ eccentricity

$$
e=\left\{\begin{array}{lll}
1 & \text { parabola } \\
0<e^{<1} & \text { ellipse } \\
e>1 & \text { hyperbola }, & \theta
\end{array}\right.
$$ (at the origin) L is the directrix line

$$
|\overline{P F}|=r \quad \Rightarrow r=e|\overline{P L}|=e(d-a)
$$

$r 2 \theta \theta_{a} \cos \left(\theta-\theta_{0}\right)=\frac{a}{r} \Rightarrow a=r \cos \left(\theta-\theta_{0}\right)$
$r=e\left(d-r \cos \left(\theta-\theta_{0}\right)\right)$
$r=e d-e r \cos \left(\theta-\theta_{0}\right)$

$$
r\left(1+e \cos \left(\theta-\theta_{0}\right)\right)=e d
$$

$r=\frac{e d}{1+e \cos (\theta \theta)}$ formula for conic
r, θ variables
e, d, θ_{0} fixed

EX 5 Name the curve. If it is a conic, give its eccentricity and sketch it.
a) $r=\frac{2}{2+2 \cos (\theta-\pi / 3)} \quad r=\frac{1}{1+\cos (\theta-\pi / 3)} \quad \begin{aligned} & \text { conic } \\ & \theta_{0}=\pi / 3\end{aligned}$

$$
r=\frac{e d}{1+e \cos \left(\theta-\theta_{0}\right)}
$$

c) $\theta=2 \pi / 3$
radial line

Conclusion
intro to polar coords

- convert between rectangular/polar
- recognize simple graphs

