

Taylor Approximations to a Function

Many math problems that occur in applications cannot be solved exactly, like $\int_0^b \sin(x^2) dx$. We need to approximate them.

Taylor Polynomial of order *n* (based at *a*)

$$P_{n}(x) = f(a) + f'(a) (x-a) + \frac{f''(a)}{2!} (x-a)^{2} + \dots + \frac{f^{(n)}(a)}{n!} (x-a)^{n}$$

$$\int_{a}^{2} \int_{a}^{2} \int_{a}^{b} \int_{a$$

EX 1 For $f(x) = e^{-3x}$, find the Maclaurin polynomial of order 4 and approximate f(0.12).

Lagrange Error for Taylor Polynomials

We know $f(x) = P_n(x) + R_n(x)$.

$$R_n(x) = \frac{f^{(n+1)}(c)}{(n+1)!} (x-a)^{n+1} \qquad \begin{array}{c} c \in (a, x) \\ \text{if } a < x \end{array} \left(\begin{array}{c} \text{or } c \in (x, a) \\ \text{if } x < a \end{array} \right)$$

EX 2 Find the error in estimating f(0.12) in the last example, $f(x) = e^{-3x}$.

EX 3 Find a good bound for the maximum value of $\left|\frac{4c}{c+4}\right|$ given $c \in [0,1]$.

EX 4	Find a good bound for the maximum value of	$\left \frac{c^2-c}{c^2-c}\right $
	given $c \in [0, \pi / 4]$.	$ \cos c $

EX 5 Find *n* such that the Maclaurin polynomial for $f(x) = e^x has f(1)$ approximated to five decimal places, i.e. $|R_n(1)| \le 0.000005$.