

The Taylor Approximation to a Function

Taylor Approximations to a Function

Many math problems that occur in applications cannot be solved exactly, like $\int_{0}^{b} \sin \left(x^{2}\right) d x$. We need to approximate them.

Taylor Polynomial of order n (based at a)

$$
P_{n}(x)=f(a)+f^{\prime}(a)(x-a)+\frac{f^{\prime \prime}(a)}{2!}(x-a)^{2}+\ldots+\frac{f^{(n)}(a)}{n!}(x-a)^{n}
$$

EX 1 For $f(x)=e^{-3 x}$, find the Maclaurin polynomial of order 4 and approximate $f(0.12)$.

Lagrange Error for Taylor Polynomials

We know $f(x)=P_{n}(x)+R_{n}(x)$.

$$
R_{n}(x)=\frac{f^{(n+1)}(c)}{(n+1)!}(x-a)^{n+1} \quad c \in(a, x) \quad\left(\begin{array}{rl}
\text { or } & c \in(x, a) \\
& \text { if } a<x
\end{array} \quad\right.
$$

EX 2 Find the error in estimating $f(0.12)$ in the last example, $f(x)=e^{-3 x}$.

EX 3 Find a good bound for the maximum value of $\left|\frac{4 c}{c+4}\right|$ given $c \in[0,1]$.

EX 4 Find a good bound for the maximum value of $\left|\frac{c^{2}-c}{\cos c}\right|$
given $c \in[0, \pi / 4]$.

EX 5 Find n such that the Maclaurin polynomial for $f(x)=e^{x}$ has $f(1)$ approximated to five decimal places, i.e. $\left|R_{n}(1)\right| \leq 0.000005$.

