

Taylor and Maclaurin Series

If we represent some function f(x) as a power series in (x-a), then

Uniqueness Theorem

Suppose

for every x in some interval around a.

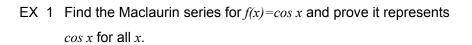
Then .

Taylor's Formula with Remainder

```
Let f(x) be a function such that f^{(n+1)}(x) exists for all x on an open interval containing a.
```

Then, for every x in the interval,

where $R_n(x)$ is the remainder (or error).


Taylor's Theorem

```
Let f be a function with all derivatives in (a-r,a+r).
```

The Taylor Series

represents f(x) on (a-r,a+r)

if and only if

EX 2 Find the Maclaurin series for $f(x) = \sin x$.

EX 3 Write the Taylor series for $f(x) = \frac{1}{x}$ centered at a=1.

EX 4 Find the Taylor series for $f(x) = \sin x$ in $(x-\pi/4)$.

EX 5 Use what we already know to write a Maclaurin series (5 terms)

for