

Taylor and Maclaurin Series

$$
f(x)=\sum_{n=0}^{\infty} \frac{f^{n}(a)}{n!}(x-a)^{n}
$$

Taylor and Maclaurin Series
If we represent some function $f(x)$ as a power series in $(x-a)$, then

$$
\begin{aligned}
& f(x)=c_{0}+c_{1}(x-a)+c_{2}(x-a)^{2}+c_{3}(x-a)^{3}+c_{4}(x-a)^{4}+\ldots \\
& f^{\prime}(x)=c_{1}+2 c_{2}(x-a)+3 c_{3}(x-a)^{2}+4 c_{4}(x-a)^{3}+\cdots \\
& f^{\prime \prime}(x)=2 c_{2}+3 \cdot 2 c_{3}(x-a)+4 \cdot 3 c_{4}(x-a)^{2}+\cdots \\
& f^{\prime \prime \prime}(x)=3 \cdot 2 c_{3}+4 \cdot 3 \cdot 2 c_{4}(x-a)+\cdots \\
& f^{(4)}(x)=4 \cdot 3 \cdot 2 c_{4}+5 \cdot 4 \cdot 3 c_{5}(x-a)+\cdots
\end{aligned}
$$

Let $x=a . \quad f(a)=c_{0} \quad f^{\prime \prime}(a)=2 c_{2} \quad f^{(4)}(a)=4 \cdot 3 \cdot 2 c_{4}$

$$
f^{\prime}(a)=c_{1} \quad f^{\prime \prime \prime}(a)=3.2 c_{3}
$$

In general, $f^{(n)}(a)=n!c_{n} \quad n=0,1,2, \ldots$

$$
c_{n}=\frac{f^{(n)}(a)}{n!}
$$

Uniqueness Theorem

Suppose $f(x)=c_{0}+c_{1}(x-a)+c_{2}(x-a)^{2}+c_{3}(x-a)^{3}+\ldots$
for every x in some interval around a.
Then $c_{n}=\frac{f^{(n)}(a)}{n!}$.

Taylor's Formula with Remainder

Let $f(x)$ be a function such that $f^{(n+1)}(x)$ exists for all x on an open interval containing a.

Then, for every x in the interva!,
$f(x)=f(a)+f^{\prime}(a)(x-a)+\frac{f^{\prime \prime}(a)}{2!}(x-a)^{2}+\frac{f^{m \prime \prime}(a)}{3!}(x-a)^{3}+\ldots+\frac{f^{n}(a)}{n!}(x-a)^{n}+R_{n}(x)$ Taylư's Formula
where $R_{n}(x)$ is the remainder (or error). $R_{n}(x)=\frac{J^{(n)}(c)}{(n+1)!}(x-a)^{n+1}$

Taylor's Theorem

Let f be a function with all derivatives in $(a-r, a+r)$.
The Taylor Series $f(a)+f^{\prime}(a)(x-a)+\frac{f^{\prime \prime}(a)}{2!}(x-a)^{2}+\ldots$
represents $f(x)$ on ($a-r, a+r$)
if and only if $\quad \lim _{n \rightarrow \infty} R_{n}(x)=0, \quad R_{n}(x)=\frac{f^{(n+1)}(c)}{(n+1)!}(x-a)^{n+1}$.

$$
c \in(a-r, a+r)
$$

EX 1 Find the Maclaurin series for $f(x)=\cos x$ and prove it represents

$$
\begin{aligned}
& \begin{array}{c|l}
f(x)=\cos x & \text { for all } x \\
f^{\prime}(x)=-\sin x & f(0)=\cos 0=1 \\
f^{\prime \prime}(0)=0 \\
f^{\prime \prime}(x)=-\cos x & f^{\prime \prime}(0)=-1 \\
f^{\prime \prime \prime}(x)=\sin x & f^{\prime \prime \prime}(0)=0 \\
f^{(1)}(x)=\cos x & f^{(\prime \prime}(0)=1 \\
\hline a=0
\end{array} \\
& \Rightarrow f(x)=f(0)+f^{\prime}(0) x+\frac{f^{\prime \prime}(0)}{2} x^{2}+\frac{f^{\prime \prime \prime}(0)}{3!} x^{3}+\frac{f^{(4)}(0)}{4!} x^{4}+\ldots \\
& =1+0+\frac{-1}{2} x^{2}+0+\frac{x^{4}}{4!}+0-\frac{1}{6!} x^{6}+\frac{1}{8!} x^{8}-\frac{1}{10!} x^{10}+\ldots \\
& =1-\frac{1}{2_{n=1}} x^{2}+\frac{1}{4!} x^{4}-\frac{1}{6!} x^{6}+\frac{1}{8!} x^{8} x^{8}-\frac{1}{10!} x^{10}+\ldots \\
& \cos x=\sum_{n=0}^{\infty} \frac{(-1)^{n} x^{2 n}}{(2 n)!} \quad \text { (maclaurin series for } \cos x \text {) }
\end{aligned}
$$

We need to show $\lim _{n \rightarrow \infty} R_{n}(x)=0$.
(then we know this power series represents $\cos x$ ($\$$ do at end of this lecture) $\quad \forall x$)

EX 2 Find the Maclaurin series for $f(x)=\sin x . \quad \mathbf{a}=0$

$$
\begin{array}{l|l}
f(x)=\sin x & f(a)=f(0)=0 \\
f^{\prime}(x)=\cos x & f^{\prime}(0)=1 \\
f^{\prime \prime}(x)=-\sin x & f^{\prime \prime}(0)=-0=0 \\
f^{\prime \prime \prime}(x)=-\cos x & f^{\prime \prime \prime}(0)=-1 \\
f^{(4)}(x)=\sin x & f^{(4)}(0)=0 \\
f(x)= \\
\begin{array}{c}
\sin x
\end{array}=f(0)+f^{\prime}(0) x+\frac{f^{\prime \prime}(0)}{2} x^{2}+\frac{f^{\prime \prime \prime}(0)}{3!} x^{3}+\frac{f^{(4)}(0)}{4!} x^{4}+\ldots \\
=0+x+0+\frac{-1}{3!} x^{3}+0+\frac{1}{5!} x^{5}+0+\frac{-1}{7!} x^{7}+\frac{1}{9!} x^{9}+\ldots \\
n=3 \\
n=2
\end{array}
$$

$$
\sin x=\sum_{n=0}^{\infty} \frac{(-1)^{n} x^{2 n+1}}{(2 n+1)!}
$$

this converges for all $x \in \mathbb{R}$

EX 3 Write the Taylor series for $f(x)=\frac{1}{x}$ centered at $a=1$.

$$
\begin{aligned}
& f(x)=\frac{1}{x} \\
& f^{\prime}(x)=\frac{-1}{x^{2}} \\
& f(1)=1 \\
& f^{\prime \prime}(x)=\frac{2}{x^{3}} \\
& f^{\prime \prime \prime}(x)=\frac{-6}{x^{4}} \\
& f^{(4)}(x)=\frac{4!}{x^{5}} \\
& \begin{array}{l}
f(1)=1 \\
f^{\prime}(1)=-1 \\
f^{\prime \prime}(1)=2
\end{array} \quad \text { pattern } \\
& \begin{array}{l}
f^{\prime \prime \prime}(1)=-6 \\
f^{(4)}(1)=4!
\end{array}\left\{\begin{array}{l}
\text { suggests } \\
f^{(n)}(1)=(-1)^{n} n!
\end{array}\right. \\
& \Rightarrow f(x)=\frac{1}{x}=f(1)+f^{\prime \prime}(1)(x-1)+\frac{f^{\prime \prime}(1)}{2!}(x-1)^{2}+\frac{f^{(1)}(1)}{3!}(x-1)^{3} \\
& =1-(x-1)+\frac{2}{2!}(x-1)^{2}+\frac{-6}{3!}(x-1)^{3}+\frac{4!}{4!}(x-1)^{4}+\cdots \\
& +\frac{(-1)^{n} n!}{n!}(x-1)^{n}+\cdots \\
& =1-\binom{x-1)}{n=1}+\left(\begin{array}{c}
x-1)^{2} \\
n=2 \\
n
\end{array}-\underset{\substack{x-1)^{3} \\
n=3}}{(x-1)^{4}+\cdots .}\right. \\
& \frac{1}{x}=\sum_{n=0}^{\infty}(-1)^{n}(x-1)^{n} \quad \text { know } \\
& \frac{1}{1-x}=\sum_{n=0}^{\infty} x^{n},|x|<1
\end{aligned}
$$

we have $\frac{1}{x}=\frac{1}{1-(1-x)}$ of this form
\Rightarrow interval of convergence

$$
|1-x|<1
$$

Convergen $\varphi \sqrt{0<x<1 \mid<1}$

$$
\text { set } 0<x<2
$$

for $f(x)=\frac{1}{x}$,
centered at $a=1$.

$$
\begin{aligned}
f(x)=\sin x=f(\pi / 4)+ & f^{\prime}(\pi / 4)(x-\pi / 4)+\frac{f^{\prime}(\pi / 4)}{2!}(x-\pi / 4)^{2} \\
& +\frac{f^{\prime \prime \prime}(\pi / 4)}{3!}(x-\pi / 4)^{3}+\cdots
\end{aligned}
$$

$$
\begin{aligned}
& f(x)=\sin x \quad f(\pi / 4)=\sqrt{2} / 2 \\
& f^{\prime}(x)=\cos x \quad f^{\prime}(\pi / 4)=\sqrt{2} / 2 \\
& f^{\prime \prime}(x)=-\sin x \quad f^{\prime \prime}(\pi / 4)=-\sqrt{2} / 2 \\
& f^{\prime \prime \prime}(x)=-\cos x \quad f^{\prime \prime \prime}(1 / 4)=-\sqrt{2} / 2 \\
& f^{\prime \prime \prime}(x)=\sin x \quad f^{(1)}(1 / 4)=\sqrt{5 / 2} \\
& \Rightarrow f(x)=\sin x=\sqrt{2} / 2+\sqrt{2} / 2(x-\pi / 4)+\frac{-\sqrt{2} / 2}{2!}\left(x-\frac{\pi}{4}\right)^{2}+\frac{-\sqrt{2} / 2}{3!}(x-\pi / 4)^{3} \\
& +\frac{\sqrt{3} / 2}{4!}\left(x-\frac{\pi}{4}\right)^{4}+\ldots \\
& \sin x=\frac{\sqrt{2}}{2}\left[1+\left(x-\frac{\pi}{4}\right)-\frac{1}{2!}\left(x-\frac{\pi}{4}\right)^{2}-\frac{1}{3!}\left(x-\frac{\pi}{4}\right)^{3}\right] \\
& \left.+\frac{1}{4!}\left(x-\frac{\pi}{4}\right)^{4}+\cdots\right]
\end{aligned}
$$

we already know $f(x)=\sin x$ Taylor series converges for all $x \in \mathbb{R}$; it's still true here, even $w /$ different center value.

EX 5 Use what we already know to write a Maclaurin series (5 terms)
for $f(x)=\frac{1}{1-\sin x}$.
Remember: $\frac{1}{1-\omega}=\sum_{n=0}^{\infty} \omega^{n} \quad|\omega|<1$

$$
\frac{1}{1-\sin x}=\sum_{n=0}^{\infty}(\sin x)^{n}
$$

x^{4} terms

$$
\begin{aligned}
& =1+\sin x+\sin ^{2} x+\sin ^{3} x+\sin ^{4} x+\ldots \\
& =1+\left(x-\frac{x^{3}}{3!}+\frac{x^{5}}{5!}-\cdots\right)+\left(x-\frac{x^{3}}{3!}+\frac{x^{5}}{5!}+\ldots\right)^{2} \\
& +\left(x-\frac{x^{3}}{3!}+\frac{x^{5}}{5!} \cdots\right)^{3}+\left(x-\frac{x^{3}}{3!}+\frac{x^{5}}{5!}+\cdots\right)^{4} \\
& =1+x-\frac{x^{3}}{6}+\left(x-\frac{x^{3}}{6}+\cdots\right)^{2}+\left(x-\frac{x^{3}}{6}+\ldots\right)^{3} \\
& +\left(x-\frac{x^{3}}{6}+\ldots\right)^{4}+\ldots \\
& =1+x-\frac{x^{3}}{6}+x^{2}-\frac{2 x^{4}}{6}+\frac{x^{6}}{36}+\left(x^{2}-\frac{x^{4}}{3}+\ldots\right)\left(x-\frac{x^{3}}{6}+\cdots\right) \\
& +\left(x^{4}+\ldots\right)+\ldots . \\
& =1+x-\frac{x^{3}}{6}+x^{2}-\frac{x^{4}}{3}+x^{3}+\ldots+x^{4}+\ldots \\
& \frac{1}{1-\sin x}=1+x+x^{2}+\frac{5}{6} x^{3}+\frac{2}{3} x^{4}+\cdots
\end{aligned}
$$

converges when $|\sin x|<1$

ExT (finish) Prove
$\cos x=\sum_{n=0}^{\infty} \frac{(-1)^{n} x^{2 n}}{(2 n)!}$ for all x.
Pf $\quad R_{n}(x)=\frac{f^{(n+1)}(c) x^{n+1}}{(n+1)!}$

$$
\Rightarrow\left|R_{n}(x)\right|=\frac{\left|f^{(n-1)}(c) x^{n+1}\right|}{(n+1)!}
$$

$$
0 \leq\left|R_{n}(x)\right| \leq \frac{|x|^{n+1}}{(n+1)!} \longleftarrow \Rightarrow\left|f^{(n+1)}(c)\right|=|\sin c| \leq 1
$$

[hope: $\lim _{n \rightarrow \infty} \frac{|x|^{n+1}}{(n+1)!}=0$] or $|\operatorname{cosc}| \leqslant 1$
we know if $\sum_{n=1}^{\infty} \frac{x^{n}}{n!}$ converges, then $\lim _{n \rightarrow \infty} \frac{x^{n}}{n!}=0$.
try ART:

$$
\begin{aligned}
& \text { l. } \lim _{n \rightarrow \infty} \frac{|x|^{n+1}}{(n+1)!} \cdot \frac{n!}{|x|^{n}} \\
& =|x| \lim _{n \rightarrow \infty} \frac{n!}{(n+1) n!}=|x| \lim _{n \rightarrow \infty} \frac{1}{n+1}=0<1
\end{aligned}
$$

for all x
\Rightarrow this series $\sum_{n=1}^{\infty} \frac{x^{n}}{n!}$ is absolutely convergent for all $x \in(-\infty, \infty)$.

$$
\begin{aligned}
& \Rightarrow \lim _{n \rightarrow \infty} \frac{x^{n}}{n!}-0 \Rightarrow \lim _{n \rightarrow \infty}\left|R_{n}(x)\right|=0 \\
& \Rightarrow \cos x=\sum_{n=0}^{\infty} \frac{(-1)^{n} x^{2 n}}{(2 n)!} \text { converges }
\end{aligned}
$$

$$
\text { for all } x \text {. }
$$

Conclusion
To creak Taylor Series:
for $f(x)$ centered at $x=a$

$$
\begin{gathered}
f(x)=f(a)+f^{\prime}(a)(x-a)+\frac{f^{\prime \prime}(a)}{2!}(x-a)^{2}+\frac{f^{\prime \prime \prime}(a)}{3!}(x-a)^{3} \\
\quad+\cdots+\frac{f^{(n)}(a)}{n!}(x-a)^{n}+\cdots
\end{gathered}
$$

