Operations on Power Series

$\int u d v=u v-\int v d u$

$$
\begin{aligned}
& \frac{1}{1-x}=1+\mathrm{x}+\mathrm{x}^{2}+\mathrm{x}^{3}+\ldots \quad-1<\mathrm{x}<1 \\
& \frac{1}{(1-x)^{2}}=1+2 \mathrm{x}+3 \mathrm{x}^{2}+4 \mathrm{x}^{3}+\ldots \quad-1<\mathrm{x}<1
\end{aligned}
$$

Operations on Power Series

Think of a power series as a polynomial with infinitely many terms.

$$
\sum_{n=0}^{\infty} a_{n} x^{n}=a_{0}+a_{1} x+a_{2} x^{2}+a_{3} x^{3}+\ldots
$$

Theorem A
Let $S(x)=\sum_{n=0}^{\infty} a_{n} x^{n}$ on the interval, I.
If x is interior to l, then

1) $S^{\prime}(x)=\sum_{n=0}^{\infty} D_{x}\left(a_{n} x^{n}\right)=\sum_{n=0}^{\infty} n a_{n} x^{n-1}$
2) $\int_{0}^{x} S(t) d t=\sum_{n=0}^{\infty} \int_{0}^{x} a_{n} t^{n} d t=\sum_{n=0}^{\infty} \frac{a_{n}}{n+1} x^{n+1}$

EX 1 We know

$$
1+x+x^{2}+x^{3}+\ldots=\sum_{n=0}^{\infty} x^{n}=\frac{1}{1-x} \quad x \in(-1,1)
$$

$$
\text { EX } 2 \text { Show } S^{\prime}(x)=S(x) \text { for } S(x)=1+x+\frac{x^{2}}{2!}+\frac{x^{3}}{3!}+\frac{x^{4}}{4!} \ldots
$$

You must first demonstrate convergence, then solve $S^{\prime}(x)=S(x)$. Notice $S(0)=1$.

EX 3 Find the power series for $f(x)=\frac{x}{1+x^{2}}$.

Theorem B

If $f(x)=\sum a_{n} x^{n}$ and $g(x)=\sum b_{n} x^{n}$ with both series converging
for $|x|<r$, we can perform arithmetic operations and the resulting series will converge for $|x|<r$. (If $b_{0} \neq 0$, the result holds for division, but we can guarantee its validity only for $|x|$ sufficiently small.)

EX 4 Find a power series for $f(x)=\sinh (x)$.

EX 5 Find the power series for $f(x)=\frac{\arctan (x)}{1+x^{2}+x^{4}}$

EX 6 Find these sums.
a) $1+x^{2}+x^{4}+x^{6}+x^{8}+\ldots$
b) $\cos x+\cos ^{2} x+\cos ^{3} x+\cos ^{4} x+\ldots$

